What are...ringed spaces?

Or: Enter, morphisms!

Better than spaces: relations between them

Slogan Spaces: good; maps: better

- Example The main stars of topology are continuous maps: topologists never study $x^2 + y^2 = 1$ itself but rather the class of its continuous deformations
- Question What are maps/morphisms of sheaves?

• Ringed spaces = X plus a sheaf of rings \mathcal{O}_X on X (some topological space)

Example An (affine) variety V is ringed using $\mathcal{O}_V =$ sheaf of regular functions (recall: regular functions are "polynomials" $V \to \mathbb{K}$)

Example More generally any X with \mathcal{O}_X = sheaf of functions $X \to \mathbb{K}$

Morphism of varieties

• Question What could be a morphism $\varphi \colon V \to W$ of varieties?

- ▶ Let us think of V as the pair (V, \mathcal{O}_V) (V and its regular functions)
- It then makes sense to demand that the pullback φ^{*}f = f ∘ φ is a regular function for all regular functions f : U ⊂ W → K

Assume for the time being that each sheaf consists of functions $U
ightarrow \mathbb{K}$

 $\varphi \colon (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces if:

(i) It is continuous

(ii) For
$$f \in \mathcal{O}_Y(U)$$
 we have $\varphi^* f \in \mathcal{O}_X(f^{-1}(U))$

An isomorphism is a morphism with an inverse that is also a morphism

- ► This is a slightly silly definition: it doesn't work for general ringed spaces since O_X does not need to consist of maps at all (more later)
- **Good** Compositions and restrictions of morphisms are morphisms

Example? Absolutely!

 \blacktriangleright The above cubic V should not be isomorphic to a line (look at the singularity)

▶ The map $\mathbb{R} \to V, t \mapsto (t^3, t^2)$ is a morphism and bijective

▶ Good The inverse $(x, y) \mapsto x/y$ for $y \neq 0$ and 0 for y = 0 is not a morphism

Thank you for your attention!

I hope that was of some help.