What is...the Why of ringed spaces?

Or: Geometry and algebra again

- Ringed spaces = X plus a sheaf of rings \mathcal{O}_X on X (some topological space)
- Example An (affine) variety V is ringed using $\mathcal{O}_V =$ sheaf of regular functions (recall: regular functions are "polynomials" $V \to \mathbb{K}$)
- Key This allowed us to define maps of varieties

From rings to morphisms – hyperbola

► Consider the conic V = V(xy - 1) with $\mathbb{C}[V] = \mathbb{C}[x, y]/(xy - 1)$

• Questions How many maps (of varieties) are there $\mathbb{C} \to V$?

► Every map $f: \mathbb{C} \to V$ gives rise to a map $\mathbb{C}[t] \leftarrow \mathbb{C}[V]: f^*$, but there are no nontrivial ones

From rings to morphisms – parabola

► Consider the conic $V = V(y - x^2)$ with $\mathbb{C}[V] = \mathbb{C}[x, y]/(y - x^2)$

• Questions How many maps (of varieties) are there $\mathbb{C} \to V$?

► Every map $f: \mathbb{C} \to V$ gives rise to a map $\mathbb{C}[t] \leftarrow \mathbb{C}[V]: f^*$, and there are nontrivial ones e.g. $t \mapsto (t, t^2) \iff x \mapsto t, y \mapsto t^2$

For affine varieties V, W (over alg. closed \mathbb{K}) there is a bijection

 $\{\text{maps } V \to W\} \stackrel{1:1}{\longleftrightarrow} \{\text{homomorphisms } \mathbb{K}[W] \to \mathbb{K}[V]\}, f \mapsto f^*$

Moreover, we have

 $\{affine varieties\}/iso. \stackrel{1:1}{\longleftrightarrow} \{fin. gen. reduced \mathbb{K}-algebras\}/iso.$

- \blacktriangleright Fin. gen reduced $\mathbb K\text{-algebras} \nleftrightarrow$ quotient of a polynomial ring
- ► This may remind you about Hilbert's Nullstellensatz

What about the ellipse?

• Rewrite $x^2 + y^2 - 1 = 0$ as (x + iy)(x - iy) - 1 = 0 as XY - 1 = 0

▶ Hence, ellipse = hyperbola up to coordinate transformation over \mathbb{C}

- ▶ Indeed, $\mathbb{C}[x, y]/(xy 1)$ and $\mathbb{C}[x, y]/(x^2 + y^2 1)$ are isomorphic
 - Careful Over \mathbb{R} , ellipse, parabola, hyperbola are all different

Thank you for your attention!

I hope that was of some help.