What is...the Why of ringed spaces?

Or: Geometry and algebra again

Reminder on ringed spaces

- Ringed spaces $=X$ plus a sheaf of rings \mathcal{O}_{X} on X (some topological space)
- Example An (affine) variety V is ringed using $\mathcal{O}_{V}=$ sheaf of regular functions (recall: regular functions are "polynomials" $V \rightarrow \mathbb{K}$)
- Key This allowed us to define maps of varieties

From rings to morphisms - hyperbola

- Consider the conic $V=V(x y-1)$ with $\mathbb{C}[V]=\mathbb{C}[x, y] /(x y-1)$
- Questions How many maps (of varieties) are there $\mathbb{C} \rightarrow V$?
- Every map $f: \mathbb{C} \rightarrow V$ gives rise to a map $\mathbb{C}[t] \leftarrow \mathbb{C}[V]: f^{*}$, but there are no nontrivial ones

From rings to morphisms - parabola

- Consider the conic $V=V\left(y-x^{2}\right)$ with $\mathbb{C}[V]=\mathbb{C}[x, y] /\left(y-x^{2}\right)$
- Questions How many maps (of varieties) are there $\mathbb{C} \rightarrow V$?
- Every map $f: \mathbb{C} \rightarrow V$ gives rise to a map $\mathbb{C}[t] \leftarrow \mathbb{C}[V]: f^{*}$, and there are nontrivial ones e.g. $t \mapsto\left(t, t^{2}\right) \leftrightarrow x \mapsto t, y \mapsto t^{2}$

For affine varieties V, W (over alg. closed \mathbb{K}) there is a bijection

$$
\{\text { maps } V \rightarrow W\} \stackrel{1: 1}{\longleftrightarrow}\{\text { homomorphisms } \mathbb{K}[W] \rightarrow \mathbb{K}[V]\}, f \mapsto f^{*}
$$

Moreover, we have
\{affine varieties $\} /$ iso. $\stackrel{1: 1}{\longleftrightarrow}$ \{fin. gen. reduced \mathbb{K}-algebras $\} /$ iso.

- Fin. gen reduced \mathbb{K}-algebras \leadsto quotient of a polynomial ring
- This may remind you about Hilbert's Nullstellensatz

What about the ellipse?

-Rewrite $x^{2}+y^{2}-1=0$ as $(x+i y)(x-i y)-1=0$ as $X Y-1=0$

- Hence, ellipse $=$ hyperbola up to coordinate transformation over \mathbb{C}
- Indeed, $\mathbb{C}[x, y] /(x y-1)$ and $\mathbb{C}[x, y] /\left(x^{2}+y^{2}-1\right)$ are isomorphic
- Careful Over \mathbb{R}, ellipse, parabola, hyperbola are all different

Thank you for your attention!

I hope that was of some help.

