Or: Zeros, once more!



Manifolds — good and bad
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» Manifold = something that is patched together from ‘discs’
» The hope Manifolds should be nice and pleasant spaces

» Problem The above definition allows pathologies



Hausdorff vs. pathologies

» Hausdorff = we can separate points

» Manifold (‘correct def') = as before but also second countable Hausdorff
space; the good one is a manifold, the bad one is not

» |Second countable = forget for today



Hausdorff vs. AG

The Zariski topology is a - eg.:

» Closed sets are very small, open sets are very large
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» One cannot separate points

> - We are using the Zariski topology

» Hence, spaces in AG are essentially never Hausdorff

> - Mimic: “X is Hausdorff & {(x, x)|x € X} C X x X is closed”



For completeness: A formal statement

We define:

» A prevariety is a ringed space with a finite open cover by affine varieties
» A variety is a prevariety V such that the diagonal
AV)={(v,v)lveV}cCcVxV

is closed in V x V

» Good Affine varieties are varieties but this one is not:
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» Essentially everything we have seen for affine varieties works in this generality

> - The product of varieties is not the topological product (next slide)



Products in AG
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» For affine varieties V C K™, W C K" the product V x W C K™ is defined
to have the | Zariski topology not the product topology

» We just mimic that for prevarieties (formally: universal property)
» This is the [‘correct” definition:
» This does what it should do in all examples (e.g. as above)

» This is the categorical product (universal property)

» On the coordinate rings this works as well: K[V x W] 2 K[V] ® K[W]



| hope that was of some help.



