What is...projective space?

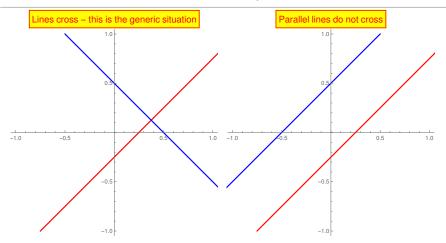
Or: Let's meet at infinity

Compact varieties

A variety:

- Recall Affine varieties (zero sets in affine space \mathbb{K}^n) are rarely compact and we thus introduced the idea of 'patchworks'
- ► A large class of compact varieties is formed by projective varieties (zero sets in projective space \mathbb{P}^n), and these are easier than general 'patchworks'
 - This time What actually is projective space \mathbb{P}^n ?

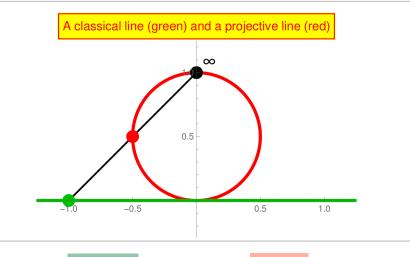
Lines should always cross!



Annoyance in classical = affine geometry: lines need not to cross

- ▶ This is however not wrong by a lot (only parallels do not cross)
- ► Projective geometry fixes this annoyance

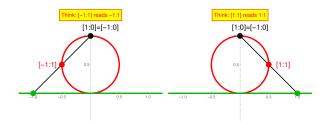
Adding infinity



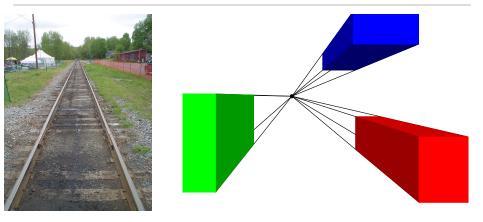
- ► Above, the green point corresponds to the red point
- ▶ Bottom (green): a classical line (\mathbb{R} , not compact)
- ► Bottom (red): a projective line (a sphere, compact)

Projective space \mathbb{P}^n is the set of equivalence classes of $\mathbb{K}^{n+1} \setminus \{0\}$ under $v \sim w \Leftrightarrow v = \lambda w$.

- Homogeneous (projective) coordinates If $v = x_0v_0 + ... + x_nv_n$ in a basis $\{v_0, ..., v_n\}$ of \mathbb{K}^{n+1} , then $[x_0 : ... : x_n]$ are the projective coordinates
- $[x_0 : ... : x_n] = [\lambda x_0 : ... : \lambda x_n]$ (Vector space up to scaling)
- $[x_0 : ... : x_{n-1} : 0]$ are points at infinity
- ▶ The points $[x_0 : ... : x_{n-1} : x_n \neq 0]$ are classical points via $[x_0/x_n : ... : x_{n-1}/x_n : 1]$
 - Two projective lines in the same plane meet in at least one point



How on earth can parallel lines meet? Well..



- ► Projective geometry is the geometry of perspective
- \blacktriangleright Parallel lines meet at ∞ similarly as train tracks meet at the horizon
- ► Later this idea was formalized into projective space

Thank you for your attention!

I hope that was of some help.