What is...the projective Nullstellensatz?

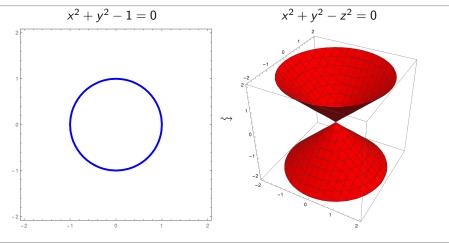
Or: From projective to affine and back

Projective is affine

Not quite the correct cone:

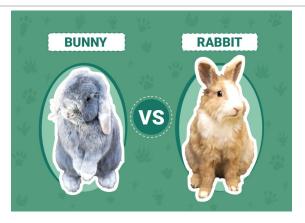
- ▶ Recall There is a bijection between cones in \mathbb{K}^{n+1} and projective varieties in \mathbb{P}^n
- ▶ In other words every projective variety "is" an affine variety
- ► Conclusion "All" affine theorems should have projective counterparts

Affine is projective



- ▶ Recall Making polynomials homogeneous goes from affine to projective varieties
- ▶ In other words every affine variety "is" a projective variety
- ► Conclusion "All" affine theorems should have projective counterparts

$\textbf{Affine} \approx \textbf{projective}$



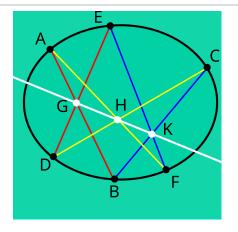
- ► There should be : a Zariski topology, regular functions, coordinate rings, ringed spaces etc. for projective varieties
- ▶ Mild adjustment Use homogeneous instead of general polynomials
- ► And yes this all works

For completeness: A formal statement

The projective Nullsellensatz holds for $\mathbb{K} = \overline{\mathbb{K}}$; this means:

- ▶ V(I(X)) = X (for $X \subset \mathbb{P}^n$) An inverse
- ▶ $I(V(P)) = \sqrt{P}$ whenever $\sqrt{P} \neq I_0$ Almost an inverse Same notation as before, but we only consider homogeneous polynomials
- ▶ Here $I_0 = \langle x_0, ..., x_n \rangle$ is the irrelevant ideal (the origin in \mathbb{K}^{n+1} does not correspond to a projective variety)
- ► Compare Here is the affine Nullstellensatz:

Is there a difference? Yes!



- ► Affine and projective are almost the same
- ► Both are special cases of general varieties
- ▶ Main difference Things that should intersect do in projective geometry

Thank you for your attention!

I hope that was of some help.