What is...the projective closure?

Or: Add points at infinity

The Riemann sphere $\mathbb{P} = \mathbb{P}^1$

- Stereographic projection = put a light source at the north pole ∞

▶ This defines a nice bijection between $\mathbb{C} \cup \{\infty\}$ and \mathbb{P}

▶ Note that \mathbb{P} is compact (in the usual topology) – let's mimic this!

Make it homogeneous

• Observation $x^2 - y^2 - 1 = 0$ and $x^2 - y^2 = 0$ touch at infinity, and both are specializations of $x^2 - y^2 - z^2 = 0$

In projective land lines are points

Above The hyperbola $x^2 - y^2 - 1 = 0$ and $x^2 - y^2 = 0$

► Recall that $x = \lambda x$ in projective land, so the lines above are points in \mathbb{P}^2

▶ The points at ∞ are a = (0:1:1), b = (0:1:-1)

For completeness: A formal statement

The projective closure \overline{V} of an affine variety V is:

▶ If V = V(f) for one polynomial f, make f homogeneous f^h and $\overline{V} = V(f^h)$

▶ The points at ∞ of \overline{V} are the points with $x_0 = 0$

► There is a similar procedure for general *V* (skipped)

• Here
$$f = f(x_1, ..., x_n)$$
 and $f^h = (x_0, x_1, ..., x_n)$

- ▶ The projective closure is the smallest closed set in \mathbb{P}^n containing V
- Since \mathbb{P}^n is compact, so is \overline{V} (in the usual topology)

A second example

Above The cubic $x^{3} - xy^{2} + 1 = 0$ and $x^{3} - xy^{2} = 0$

• The projective closure is
$$x^3 - xy^2 + z^3 = 0$$

►

▶ The points at ∞ are a = (0:1:1), b = (0:1:-1), c = (0:0:1)

Thank you for your attention!

I hope that was of some help.