What is...the Segre embedding?

Or: Multiplying polynomials? Kind of!

Products are a bit nasty in AG

- Recall The product of affine varieties is an affine variety
- Mild catch The topology on the product is not the product topology
- ► In projective-land we can describe the product explicitly

Multiplying polynomials

	2x²	3×	6
×	2× ³	3x²	6x
_4	-8x²	-12x	-24
	2x ³	-5x²-6x	-24 🗸

Observation Looks like a square

▶ Idea Maybe we should multiply $(x_0 : x_1)$ and $(y_0 : y_1)$ as polynomials

In projective land lines are points

▶ Setup First copy of \mathbb{P}^1 consists of points $(x_0 : x_1)$, the second of points $(y_0 : y_1)$

• The map $((x_0 : x_1), (y_0 : y_1)) \rightarrow (x_0y_0 : x_0y_1 : x_1y_0 : x_1y_1)$ does a good job

The Segre embedding is:

 $f: \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{(m+1)(n+1)-1}, \left((x_0: \ldots: x_m), (y_0: \ldots: y_n) \right) \mapsto (\ldots: x_i y_j: \ldots)$

It identifies $\mathbb{P}^m \times \mathbb{P}^n$ with

$$V(z_{i,j}z_{k,l}-z_{i,l}z_{k,j}|0 \le i,k \le m, 0 \le j,l \le n)$$

- ▶ In particular, $\mathbb{P}^m \times \mathbb{P}^n$ is a projective variety
- ► This implies that product of projective varieties is projective

The determinant

► Where does $V(z_{i,j}z_{k,l} - z_{i,l}z_{k,j}|0 \le i, k \le m, 0 \le j, l \le n)$ come from?

• Example For m = n = 1 this is $z_{0,0}z_{1,1} - z_{0,1}z_{1,0}$

▶ This is the determinant of $\begin{pmatrix} z_{0,0} & z_{0,1} \\ z_{1,0} & z_{1,1} \end{pmatrix}$

Thank you for your attention!

I hope that was of some help.