What is...Schubert calculus?

Or: Intersecting spaces

Schubert's book

- ► Schubert calculus = a method to solve various geometric counting problems (e.g. "How often does XYZ intersect ABC?")
- ► These were published by Schubert in 1879
- ▶ Problem The original ideas were 'Euler-style': brilliant, but not rigorous

Hilbert's question

Solve 7th-degree equation using 13th algebraic (variant: continuous) functions of two parameters.	Unresolved. The continuous variant of this problem was solved by Vladimir Arnold in 1957 based on work by Andrei Kolmogorov (see Kolmogorov-Arnold representation theorem), but the algebraic variant is unresolved. ^[k]	_
Is the ring of invariants of an algebraic group acting on a polynomial ring always finitely generated?	Resolved. Result: No, a counterexample was constructed by Masayoshi Nagata.	1959
Rigorous foundation 15th of Schubert's enumerative calculus.	Partially resolved. ^[23]	-
Describe relative positions of ovals originating from a real algebraic curve and as limit cycles of a polynomial vector field on the plane.	Unresolved, even for algebraic curves of degree 8.	_

- ► Hilbert's 23 problems are among the most influential questions in mathematics
- ► These were asked by Hilbert in 1900
- ► Among them: Make Schubert's ideas rigorous

A first solution

- ► Easy but crucial Generically, two planes in three space intersect in a line, three in a point and four have no common intersection
- ► Cohomology ring $H^*(\mathbb{P}^3) \cong \mathbb{Z}[x]/x^4$, and:
 - ► x plane
 - ▶ $x^2 \iff \text{plane} \cap \text{plane} = \text{line}$
 - ► $x^3 \iff \text{plane} \cap \text{plane} \cap \text{plane} = \text{point}$
 - $\rightarrow x^4 \leftrightarrow \text{plane} \cap \text{plane} \cap \text{plane} = \text{dead}$

For completeness: A formal statement

The cohomology ring of G(k, n) is:

- (i) It is a quotient of symmetric polynomials in $x_1, ..., x_k$
- (ii) The quotient is given by annihilating the complete symmetric polynomial with n-k+1 nodes
- (iii) It has a basis by Schur polynomials s_{λ} that fit into a k(n-k) box
- (iv) The s_{λ} have explicit structure constants (Littlewood–Richardson coefficients)
 - ► This explicitly describes Schubert's calculus
 - Why? Because cohomology ring = intersections, and s_{λ} = subspaces

Example

- ▶ Recall $H^*(\mathbb{P}^3) \cong \mathbb{Z}[x]/x^4$ and $\mathbb{P}^3 \cong G(1,3)$
- ▶ Indexing set $\emptyset \longleftrightarrow 1$, $\square \longleftrightarrow x$, $\square \longleftrightarrow x^2$, $\square \longleftrightarrow x^3$, $\square \longleftrightarrow kill$,
- lacktriangle In general, $H^*(\mathbb{P}^n)\cong \mathbb{Z}[x]/x^{n+1}$ and $\mathbb{P}^n\cong G(1,n)$; $x \leftrightsquigarrow (n-1)$ hyperplane
- ▶ The picture is dualized and we take a (hyper)plane and not a line

Thank you for your attention!

I hope that was of some help.