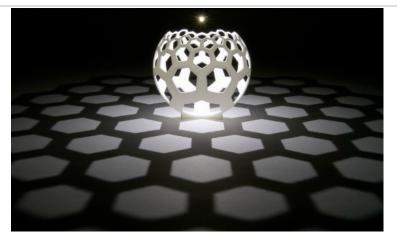
What are...birational maps?

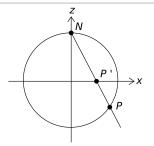
Or: Affine is projective

Stereographic projection (SP)



- ► Affine space = the plane
- ► Projective space = the sphere
- ▶ Question They are essentially the same how to make this rigorous?

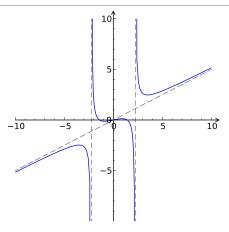
Stereographic projection - coordinates (shifted)



$$\begin{split} (X,Y) &= \left(\frac{x}{1-z}, \frac{y}{1-z}\right), \\ (x,y,z) &= \left(\frac{2X}{1+X^2+Y^2}, \frac{2Y}{1+X^2+Y^2}, \frac{-1+X^2+Y^2}{1+X^2+Y^2}\right). \end{split}$$

- ▶ SP identifies affine and projective space except for the north pole
- \blacktriangleright (X, Y) = coordinates of the plane
- \blacktriangleright (x, y, z) = coordinates of the sphere

Not a polynomial!

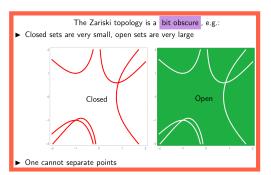


- ▶ Observation 1 SP is not given by a polynomial but rather by a rational function
- ▶ Observation 2 SP is not defined on the whole sphere but only on an open subset
- ▶ Idea Use this to define our equivalence

For completeness: A formal statement

We define an equivalence relation on varieties by:

- (i) Rational maps V o W are morphism from a nonempty open subset to W
- (ii) A birational map V o W is a rational map with a rational inverse
- (iii) $V \cong_b W$ (birationally equivalent) if there exists a birational map $V \to W$
 - ► Example Affine space is birationally equivalent to projective space
 - ▶ Recall Open sets are large, so 'from a nonempty open subset' is not a huge restriction



Birational is difficult

$$\frac{1}{az^5 + z^3 + bz}$$

$$\frac{1}{z^3 + z(-3-3i)}$$

$$\frac{z^2 - 0.2 + 0.7i}{z^2 + 0.917}$$

$$\frac{z^2}{z^9 - z + 0.025}$$

- ► Careful Rational maps are much more intricate than polynomials
- ► Example Julia sets arise as iterations of rational functions
- ► And indeed, birational equivalence is difficult

Thank you for your attention!

I hope that was of some help.