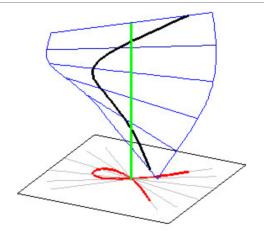
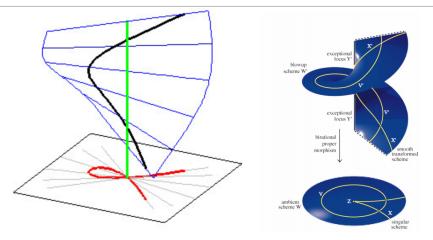

What is...a blow up, take 1?

Or: Blowing up balloons

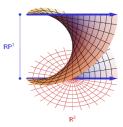

Singularities are interesting (=good and bad)


- ► Singularities , in life and mathematics, are "point-events that change everything"
- ► The birth of a child drastically changes your life
- ▶ The most interesting part of a cone is the point at the origin

Blow up singularities

- ▶ Idea Study singularities by finding a nonsingular space birationally equivalent to the original one
- Why? Well, singular is interesting, but also difficult

Adding a twisted time direction



- ▶ Idea Remove singularities by "pulling them into space"
- ► Example (left) The double point becomes two points
- ► Example (right) Twisting the top, the cusp is removed as well

For completeness: A formal statement

For some affine variety $V \subset \mathbb{K}^n$ fix:

- (i) Polynomials $f_1, ..., f_k \in \mathbb{K}[V]$
- (ii) $U = V \setminus V(f_1, ..., f_k)$
- (iii) The evaluation $f:U\to \mathbb{P}^{n-1},x\mapsto (f_1(x):...:f_r(x))$
- (iv) The graph $\Gamma_f = \{(x, f(x))\} \subset U \times \mathbb{P}^{n-1}$ The closure of Γ_f , denote \tilde{V} is the blow-up of V at $f_1, ..., f_k$
 - ▶ f is well-defined since $f_1, ..., f_k$ do not vanish simultaneously
 - ▶ Projective space does the twist automatically

Nomenclature

- ▶ The name comes from inflation like "blowing up a balloon"
- ► Alternatively Read blow up as "zooming in on a photograph"
- ► This is not meant in the sense of explosion

Thank you for your attention!

I hope that was of some help.