What is a...blow up, take 2

Or: Playing with a time coordinate

Running example

Example Take the affine variety $V(y^2 - x^2 - x^3)$

Recall Add a time direction t to avoid the singular point at the origin
Question How do we describe the right side from y² - x² - x³ = 0?

Two equations

• Idea Birationally, using t = y/x doesn't change the variety

- We get two equations $t^2 1 x = 0$ and y tx = 0
- \blacktriangleright This takes place in $\mathbb{K}^2\times\mathbb{P}^1$ with \mathbb{P}^1 identified as 'time'

Intersection

Above The intersection of $t^2 - 1 - x = 0$ and y - tx = 0

Looks good!

• Summary $\mathbb{K}^2 \setminus V(x,y) \to \mathbb{P}^1, (x,y) \mapsto (y/x:1)$ does the job

For some affine variety $V \subset \mathbb{K}^n$ fix: (i) Polynomials $f_1, ..., f_k \in \mathbb{K}[V]$ (ii) $U = V \setminus V(f_1, ..., f_k)$ (iii) The evaluation $f: U \to \mathbb{P}^{n-1}, x \mapsto (f_1(x) : ... : f_r(x))$ (iv) The graph $\Gamma_f = \{(x, f(x))\} \subset U \times \mathbb{P}^{n-1}$ The closure of Γ_f , denote \tilde{V} is the blow-up of V at $f_1, ..., f_k$

▶ The is a map $\pi \colon \tilde{V} \to V$, and $\pi^{-1}(V)$ is the exceptional set

▶ Next slide How does our example fit into this for the blow up ?

Zoom into the example

▶ What we have seen \tilde{V} is \mathbb{K}^2 blown up at the coordinate functions x, y

▶ What we have seen is the transformation of $V(y^2 - x^2 - x^3)$ at x, y, that is, $\tilde{V}(y^2 - x^2 - x^3)$ realized within \tilde{V}

Fact $\tilde{V}(y^2 - x^2 - x^3)$ is the closure of $V(y^2 - x^2 - x^3) \cap U$ in \tilde{V}

Thank you for your attention!

I hope that was of some help.