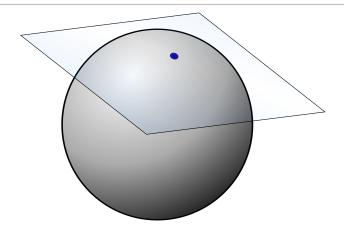
What is a...blow up, take 3?

Or: Tangent cones

Tangent spaces

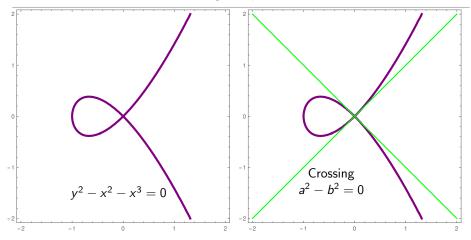


► Tangents (= lowest order approximations) are everywhere in math

• **Example above** The tangent plane for $x^2 + y^2 + z^2 - 1 = 0$

Question What are tangent spaces for singularities?

Tangent spaces?

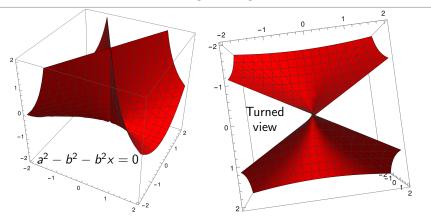


▶ The curve above has a singularity at (0,0)

▶ Indeed, the partial derivatives vanish at the point (0,0)

• Observation The 'crossing' is the limit $(x, y) \rightarrow (0, 0)$ of two tangents

Adding time again



• Change of variables y = at, x = bt

 $(y^2 - x^2 - x^3 = 0) \Rightarrow (a^2t^2 - b^2t^2 - b^2t^2x = 0) \Rightarrow (a^2 - b^2 - b^2x = 0)$

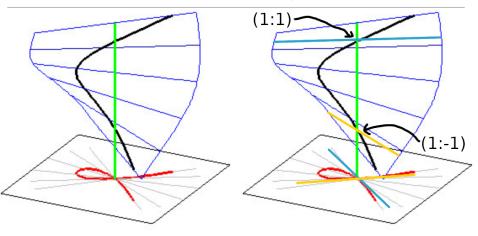
• At our singularity we have x = 0, so $a^2 - b^2 = 0$

► Why does this work ?

For some affine variety
$$V \subset \mathbb{K}^n$$
 and some point $v \in V$:
(i) Consider the blow-up \tilde{V} of V at $x - v$
(ii) We have $\pi : \tilde{V} \to V$, and $\pi^{-1}(\{v\})$ is the exceptional set (a projective variety)
(iii) The cone over $\pi^{-1}(\{v\})$ is called the tangent cone
This replaces the tangent for singular spaces
• Cone = "union of lines" (see video "What are...cones?")
• Formally:
{cones in \mathbb{K}^{n+1} } $\stackrel{1:1}{\leftarrow}$ {projective varieties in \mathbb{P}^n }
 $V \mapsto$ projectivization $\pi(V)$ of V
cone $C(W) = \{0\} \cup \pi^{-1}(W)$ of $W \leftarrow W$
where $\pi : \mathbb{K}^{n+1} \setminus \{0\} \to \mathbb{P}^n, (x_0, ..., x_n) \mapsto (x_0 : ... : x_n)$

▶ Next slide How does our example fit into this?

Zoom into the example



Green horizontal line $= \pi^{-1}(\{0\})$ in $\tilde{\mathbb{K}^2}$; $\pi^{-1}(\{0\})$ in $\tilde{V} = (1:\pm 1)$

• Cone = union of lines in gray for $ilde{\mathbb{K}^2}$; restrict to the ones touching $(1:\pm 1)$

• Our example Lowest order approximation (equivalent to calculating tangent cones)

Thank you for your attention!

I hope that was of some help.