What are...smooth varieties?

Or: Not smooth is rare

Smooth manifolds

- ▶ Recall A function $f: \mathbb{C} \to \mathbb{C}$ is differentiable \Leftrightarrow it is analytic/smooth
- ▶ Differentiable = a tangent can be defined; Smooth = no corners
- ▶ Ansatz Define what it means to be smooth as a variety using a 'tangent'

Two equations

- ► Top ("no corners") The tangent cone is a tangent
- ▶ Bottom ("corners") The tangent cone is not a tangent
- ▶ Idea Define a tangent as a linear tangent cone

Tangent = linear approximation

- Above The two equations are $y^2 x^2 x^3 = 0$ and $y^2 x^3 = 0$
- ▶ There is no linear term so the tangent should be V(0) = all of space
- Observation The tangent cone is always inside of the tangent

For completeness: A formal statement

The tangent (at the origin) is define as follows:

- (i) The linear term f' of f is the sum of all monomials of degree one
- (ii) Say $V = V(f_1, ..., f_k)$
- (iii) Then the tangent at the origin is $T(V) = V(f'|f \in \langle f_1,...,f_k \rangle) \supset C(V)$
- (iv) For other points shift the coordinates to the origin

Thus, tangent = forget nonlinear terms

- ▶ Definition Smooth \iff C(V) = T(V) (tangent cone equals tangent)
- ▶ Next video Why does this agree with the usual definition of smooth?

Singularities are rare

- ► Singularities , in life and mathematics, are "point-events that change everything"
- ▶ Indeed , we have: the set of smooth points is open
- ► Recall Open sets are large (e.g. for irreducible varieties they are dense)

Thank you for your attention!

I hope that was of some help.