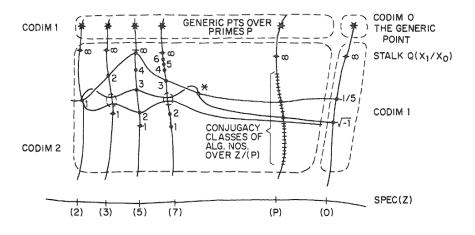
What are...schemes, take 1?

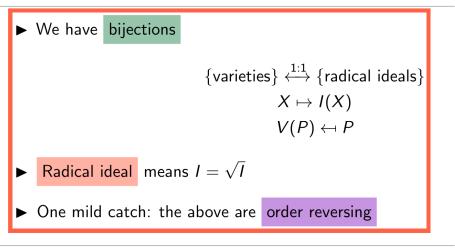
Or: Spec in action

Running example



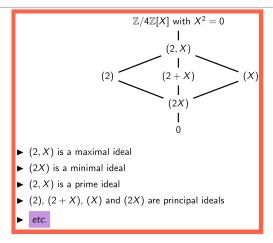
- Goal Understand the picture above
- ► Today The bottom horizontal line
- ▶ The picture is from Mumford's "Lectures on Curves on an Algebraic Surface"

Reminder



- Above (A consequence of) Hilbert's Nullstellensatz
- ► Idea Define "varieties" on the right side
- One upshot is that we get rid of the underlying field

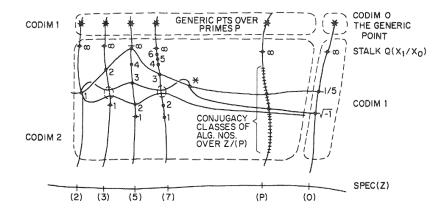
Reminder 2



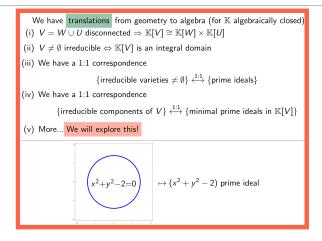
- Above Ideals in the ring $(\mathbb{Z}/4\mathbb{Z}[X])/(X^2)$
- Prime ideal $P \neq R$ and $(ab \in P \Leftrightarrow a \in P \text{ or } b \in P)$
- ▶ This mimics : $p \neq 1$ is prime $\Leftrightarrow (p|ab \text{ implies } p|a \text{ or } p|b)$

The spectrum $\operatorname{Spec} R$ of a commutative ring R is the set of all prime ideals

- ▶ Prime ideals in \mathbb{Z} : (0) or (*p*) for *p* prime
- ▶ $\operatorname{Spec} \mathbb{Z}$ is the bottom vertical line of



Zariski? Yes, we need it!



- $\blacktriangleright Right now Spec R is a set$
- Scheme = $\operatorname{Spec} R$ plus a Zariski type topology
- ▶ Next time, motivated by the above , how does this work?

Thank you for your attention!

I hope that was of some help.