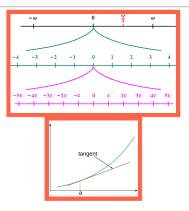
What are...morphisms of schemes?

Or: Functions that are not determined by their input

Dual numbers again

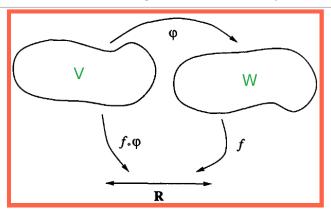


▶ Dual numbers $R = \mathbb{K}[X]/(X^2)$ (think of X as being a linear infinitesimal) with one prime ideal P = (X)

• Regular functions on Spec R are of the form $\phi = a + b \cdot X$ for $a, b \in \mathbb{K}$

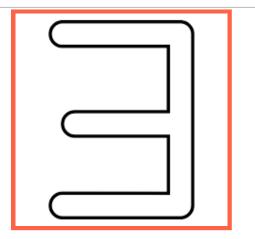
► For schemes, regular functions are not determined by their inputs since $\phi(P) = a$ for all ϕ

This doesn't generalize immediately



- ▶ Recall that we think of V as the pair (V, \mathcal{O}_V) (V and its regular functions)
- ▶ It then made sense to demand that the pullback $\varphi^* f = f \circ \varphi$ is a regular function for all regular functions $f: U \subset W \to \mathbb{K}$
- Problem For schemes, regular functions are not determined by their evaluation, so this is probably the wrong thing to do

Assume existence

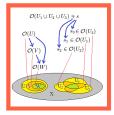


Recall φ: (X, O_X) → (Y, O_Y) is a morphism of ringed spaces if:
(i) It is continuous
(ii) For f ∈ O_Y(U) we have φ*f = f ∘ φ ∈ O_X(f⁻¹(U))
For schemes we assume that φ* exist (whatever it is)

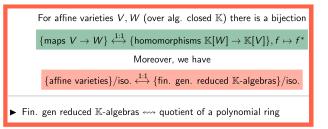
 φ : (Spec $R, \mathcal{O}_{\text{Spec }R}$) \rightarrow (Spec $S, \mathcal{O}_{\text{Spec }S}$) is a morphism of schemes if: (i) It is continuous

(ii) For every open subset $U \subset \operatorname{Spec} S$ a ring homomorphism $\phi_U^* \colon \mathcal{O}_{\operatorname{Spec} S}(U) \to \mathcal{O}_{\operatorname{Spec} R}(\phi^{-1}(U))$ Pullback such that:

- (I) The pullback maps are compatible with restrictions
- (II) A condition on maximal ideals (omitted)
 - ► Note that we assume existence of the pullback
 - ▶ The story than goes through as for "usual" morphisms of varieties



Great, the expected generalization



For schemes $\operatorname{Spec} R, \operatorname{Spec} S$ there is a bijection

{maps Spec $R \to \text{Spec } S$ } $\stackrel{\text{(1:1)}}{\longleftrightarrow}$ {homomorphisms $S \to R$ }, $f \mapsto f^*$

Moreover, we have

{affine schemes}/iso. $\stackrel{1:1}{\longleftrightarrow}$ {rings}/iso.

Thank you for your attention!

I hope that was of some help.