What are...schemes, take 4?

Or: Schemy summary

Patchworks

Scheme = something that is patched together from affine schemes

Some conditions

$$B = egin{bmatrix} 0 & 2 & 1 & 6 \ 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 3 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

is nilpotent, with

$$B^2=egin{bmatrix} 0&0&2&7\ 0&0&0&3\ 0&0&0&0\ 0&0&0&0\ \end{pmatrix};\ B^3=egin{bmatrix} 0&0&0&6\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0\ \end{pmatrix};\ B^4=egin{bmatrix} 0&0&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0\ \end{pmatrix}$$

► Actually, scheme = patchwork plus a few conditions

Reduced (condition 1) No nilpotent elements in $\mathcal{O}_{\text{Spec }R}(U)$ for open U

► Finite type + separated (conditions 2 + 3) A finiteness condition and a Hausdorff condition

Varieties are schemes

For affine varieties V, W (over alg. closed K) there is a bijection
{maps V → W} ^{1:1} {homomorphisms K[W] → K[V]}, f ↦ f*
Moreover, we have
{affine varieties}/iso. ^{1:1} {fin. gen. reduced K-algebras}/iso.

Fin. gen reduced K-algebras ↔ quotient of a polynomial ring

- ► Affine varieties are certain affine schemes
- ► Varieties are certain schemes:

 $\{\text{varieties over } \mathbb{K}\}/\text{iso.} \xleftarrow{1:1} \{\text{separated reduced schemes of finite type over } \mathbb{K}\}/\text{iso.}$

Let's summarize :

- (i) Spec R affine scheme = prime ideals in R with Zariski topology
- (ii) $\operatorname{Proj} R$ projective scheme = homo. prime ideals in R with Zariski topology
- (iii) General scheme = has a covering with affine schemes

- ► The story then goes through as for varieties, but beefed-up:
 - \bullet We have regular functions $\mathcal O$ (localizations) and ringed spaces
 - Schemes correspond to general rings
 - We can distinguish x = 0 and $x^2 = 0$

The geometry of fat points

► Classical varieties do not give any higher order points

• Double point arise from $\operatorname{Spec} \mathbb{K}[X]/(X^2)$

▶ Triple point arise from $\operatorname{Spec} \mathbb{K}[X]/(X^3)$ or $\operatorname{Spec} \mathbb{K}[X, Y]/(X^2, Y^2, XY)$

Thank you for your attention!

I hope that was of some help.