Or: Dirac's delta



Sheaves of modules

ST

> - Sheaves of modules have Oy-modules attached to open sets

» Essentially this means that they have vector spaces attached to open sets

> - The most linear-algebra-type constructions should work!



Indicator functions
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> _ (of a point) takes value 1 (or similar) at a point and

vanishes everywhere else

» Example Dirac’s delta

> - These are very useful but also very easy



Make it a sheaf!
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» Sections = functions on V that only have a value at p




For completeness: A formal statement

» The name comes from thinking about a line connecting p and f(p)

» Alternatively, this can be construction by _ (a linear

algebra construction) along the inclusion ¢: p — V

» There is also the _ (another linear algebra construction)



More linear algebra
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» These give sheaves Direct sum and tensor product
» More sheaves Kernel and image

» There is - to extend these linear algebra definitions to sheaves



| hope that was of some help.



