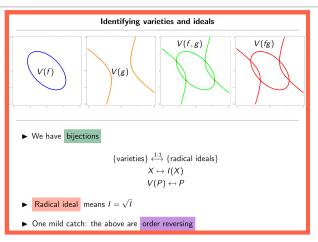
What are...quasi-coherent sheaves?

Or: Translate to algebra, please

All I know about AG

- ► Recall Algebraic geometry (AG) loves rings
- ► More precisely, AG wants to translate geometry question to algebra questions
- Problem Sheaves of modules are too general and do not resonate well with algebra

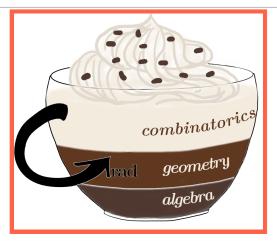
R modules = linear algebra



► Above Hilbert's Nullstellensatz as a prototypical example how to go between geometry and algebra

▶ Idea Every *R*-module should give us a sheaf of modules that behaves "very algebraically" and can be studied using module theory

Sheaves associated to *R*-modules



- Recall $\mathcal{O}_{\operatorname{Spec} R}$ = sheaf of regular functions
- ▶ In this definition replace R by M for some R-module M
- Result \tilde{M} = sheaf of regular functions on M (sheaf of R-modules)

For completeness: A formal statement

A sheaf of modules \mathcal{F} is quasi-coherent if:

(i) There is an affine open cover $\{U_i = \text{Spec } R_i\}$ of V

(ii) The restrictions \mathcal{F}_{U_i} are isomorphic to some \tilde{M}_i

▶ This is like a patchwork of \tilde{M}_i

Fact For any open subset U the restriction \mathcal{F}_U is isomorphic to some \tilde{M}_U

• Coherent = same but for finitely generated M_i

Translate to module theory

▶ Most statements about quasi-coherent sheaves can be translated into algebra

Example For *M* and *N*, both *R*-modules, there is a bijection

 $\{\text{morphisms of sheaves } \tilde{M} \to \tilde{N}\} \stackrel{1:1}{\longleftrightarrow} \{R\text{-module morphisms } M \to N\}$

Thank you for your attention!

I hope that was of some help.