What are...Kähler differentials, part 2?

Or: Tangent bundles

Tangent bundles

Vector bundle = a linear algebra generalization of a cylinder

- Idea To every point of the space we attach a vector space so that these fit together to form another space of a desired type (manifold, or variety, or...)
 - Today Tangent sheaves / bundles = tangent vector spaces at each point

The affine plane

Recall The coordinate ring of the affine plane is $R = \mathbb{C}[x, y]$

Differentials It is easy to see that

 $\Omega_R = Rdx \oplus Rdy$

Bimodules and multiplication

Recall Bimodule = "a wall that you can hit with a ball from two sides"

• Example $R \otimes_{\mathbb{K}} R$ for an \mathbb{K} -module R

• Multiplication map $\delta \colon R \otimes_{\mathbb{K}} R \to R$ given by $f \otimes g \mapsto fg$

For a \mathbb{K} -algebra R let Ω_R be as before, and $J = \ker \delta$

 $\Omega_R \cong J/J^2$ as *R*-modules

- **Example** For the affine plane, J is spanned by $1 \otimes x x \otimes 1$ and $1 \otimes y y \otimes 1$; and $dx \mapsto 1 \otimes x - x \otimes 1$ and $dy \mapsto 1 \otimes y - y \otimes 1$ is the isomorphism
- ► For a variety *V*, we can define a sheaf (cotangent bundle) Ω_V via pullback $i^*(\mathcal{J}/\mathcal{J}^2)$ (details omitted)

Lemma 14.8 (Ideal sequence). Let $i: Y \to X$ be the inclusion of a closed subscheme.

- (a) If \mathscr{F} is a quasi-coherent sheaf on Y then $i_*\mathscr{F}$ is quasi-coherent on X.
- (b) There is an exact sequence

$$0 \to \mathscr{I}_{Y/X} \to \mathscr{O}_X \to i_*\mathscr{O}_Y \to 0$$

of quasi-coherent sheaves on X, where the second non-trivial map is the pull-back of regular functions as in Example 13.10 (a). Its kernel $\mathcal{I}_{Y|X}$ is called the **ideal sheaf** of Y in X.

For details and the picture see https://agag-gathmann.math.rptu.de/class/alggeom-2021/alggeom-2021.pdf

Example

• Recall Projective space \mathbb{P}^1 is the circle S^1

• Example The tangent bundle on \mathbb{P}^1 is an infinite cylinder

Thank you for your attention!

I hope that was of some help.