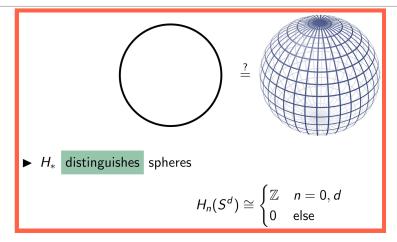
What is...sheaf cohomology, part 2?

Or: Properties and definition

The homology of the sphere

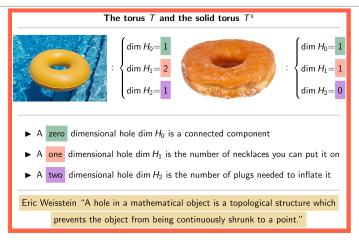


Topology The homology of the sphere S^n is $1 + t^n$

• Algebraic geometry The homology of projective space \mathbb{P}^n should be $1 + t^n$

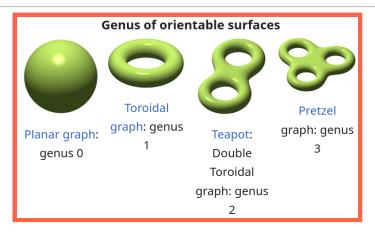
▶ Truth The homology of $\bigoplus_{d \in \mathbb{Z}} \mathcal{O}(d)$ on \mathbb{P}^n is concentrated in degrees 0, *n*

The homology of manifolds



- Topology The homology of an *n*dim manifold is $a_0 + ... + a_n t^n$
- Algebraic geometry The homology of an *n*dim variety should be $a_0 + ... + a_n t^n$
- Truth This is true for projective and affine varieties

Genus = dimension of first homology group



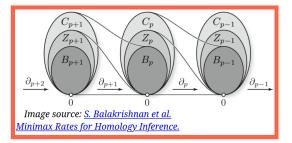
Topology The genus of an orientable surface is a_1

• Algebraic geometry The genus of a plane curve should be a_1

• Truth This is indeed true (using the structure sheaf)

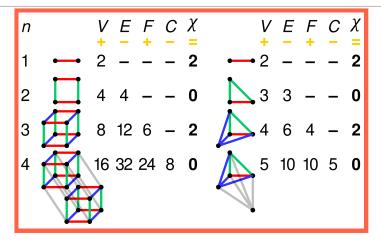
Cohomology of sheaves is defined as follows: (i) Let \mathcal{F} be a sheaf on V, and fix an affine open cover $U_1, ..., U_r$ (Setting) (ii) $C^i = \bigoplus_{j_1 < ... < j_i} \mathcal{F}(U_{j_1} \cap ... \cap U_{j_i})$ (Cochain groups: \mathbb{K} vector spaces) (iii) $d^i : C^i \to C^{i+1} =$ sum over leaving out indexes; details skipped (Differential) Cohomology: $kerd^i/imd^{i-1}$

• Theorem This is well-defined $(d^2 = 0)$ and independent of the cover



► Cohomology is an invariant of sheaves

Euler characteristic



• Topology The Euler characteristic is $a_0 - a_1 \pm \dots$

• Algebraic geometry The Euler characteristic should be $a_0 - a_1 \pm ...$

Truth This is indeed true (and additive on exact sequences)

Thank you for your attention!

I hope that was of some help.