Or: The spectrum knows a lot!



Characterizing graphs

$=1{3,1,1,1,1,1,-2,-2,—2 -2} S=1{3,1,1,1,-1,-1,—1,-3}

» The spectrum S = {A; > ... > Ap} can characterize graphs
» Example G is k regular < A2 + ...+ \2 = kn

» [Example G is bipartite & (\; € S = —\; € S with same multiplicity)



Detecting clusters

S =1{3,25130% —13 26 -3}, I< —24-3-(-3)/(32-3( .

» Coclique = a set of pairwise nonadjacent vertices

» Independence number «(G) = size of the largest coclique

» Example We have a(G) < —nA1\,/(6% — A\1A,); 6 = minimum vertex degree



Knowing colorings

S=1{3,V/5,15,0% 2%, —\/5},234 <3< x(G) <4

» The spectrum knows  colorings , e.g. the chromatic number x(G)
» Example If G is connected, then x(G) <1+ A\

» Example| If G is not edgeless, then x(G) > 1 — A1 /A,
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For completeness: A formal statement

The graph spectrum has many applications, e.g.:

For characterizing graphs | My first example
For (co)cliques | My second example

For colorings | My third example
For variations, e.g. x(G) > min(1+ mult(X,),1 — Xn/X2) for A, >0

For many more, e.g. Shannon capacity

S=1{3,5,15,0% —2% —\/5}



PageRank

Suppose pages xi, ..., x,, are the pages that link to a page y. Let page x; have d; outgoing
links. Then the PageRank of y is given by

PR(y):lfajLaZ%(_x").

The PageRanks form a probability distribution: ¥, PR(x) = 1. The vector of PageRanks can
be calculated using a simple iterative algorithm, and corresponds to the principal eigenvec-
tor of the normalized link matrix of the web. A PageRank for 26 million web pages can be
computed in a few hours on a medium size workstation. A suitable value for o is oo = 0.85.
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PageRank

» Google's  PageRank is one of the most crucial applications of the spectrum

» There will be a whole video explaining it



| hope that was of some help.



