Or: Applications 2 (topology in data analysis)



Growing discs and homology

Hy=2Z Bo=
H =Z B =
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> As one increases a threshold, at what scale do we observe changes in data?
» There are many different flavors

» Today Discrete points in R”



Oth persistent homology

Growing Disks Around Each Point Persistence Diagram
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» The Oth persistent homology measures how connected components  change

» Birth New 0d holes=connected components

» Death 0d holes=connected components vanish



1th persistent homology

Growing Disks Around Each Point Persistence
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» The 1th persistent homology measures how internal circles |[change
» Birth New 1d holes=internal circles

» Death 1d holes=internal circles vanish



For completeness: A formal definition

X finite simplicial complex, f: K — R with f(o) < f(7) whenever ¢ is a face of T
» K(a) =f1(] — o0, a]) is a [subcomplex , and we get Ko C ... C K, = K

> Ki— K for i <jinduce £14: Hy(Ki) = Hy(Kj)
» pth persistent homology = 'images of these £,/

Persistence diagram Persistent nd holes are far-away from y = x
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Example. Cis born at 0.8 and dies at 1.3



Real-world applications of homology — one example
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Homology proved useful in detecting age differences in brain artery trees

Idea Render brain artery trees into point-clouds and use persistent homology

Differences are subtle — like most differences in human brains — but measurable




| hope that was of some help.



