Or: Knots and three manifolds



Knot complements, again!

» A knot complement S3\ int(K) is a 3mfd bounding a |torus
» Idea Glue back in a solid torus ST, but “twisted”

» This should produce a |closed| 3mfd



The image of the meridian

» Any such gluing is determined by the image of the meridian m

» m goes to some simple closed curve v in T = 9ST, and it hence suffices to
describe ~



Two numbers p, q
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» Up to sign each simple closed curve 7y in T is determined by
how often p it follows the meridian m and how often g the longitude /

» If you like this: [y] =p-[m]+q-[/] € Hi(OT)

» Thus, every gluing of T is determined by p,q € Z

» The ratio p/qg € QU {oo} is the surgery coefficient



For completeness: A formal statement

Every closed, orientable, connected 3mfd can be obtained by Dehn surgery, that is:
(i) Pick a finite collection of knots in S3

(ii) Pick a surgery coefficient for each knot

(iii) Perform the “remove-insert” surgery

» Example 1/0-surgery gives S3
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» One can even restrict to integral coefficients p/q € Z U {0}



Lens spaces
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» Example Surgery of S3 along a p/q unknot gives the p/q Lens space

» In particular, all 1/q surgeries along unknots give back S*

» Missing:| some tool to tell whether the obtained 3mfds are the same



| hope that was of some help.



