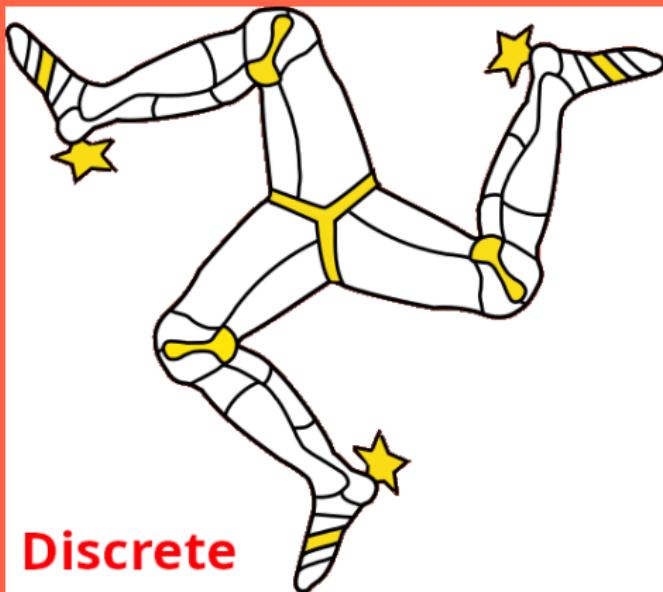
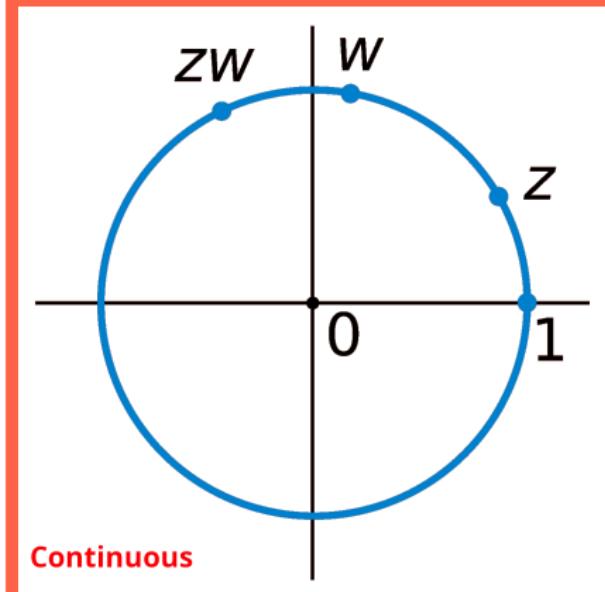


Lie theory - part 2?

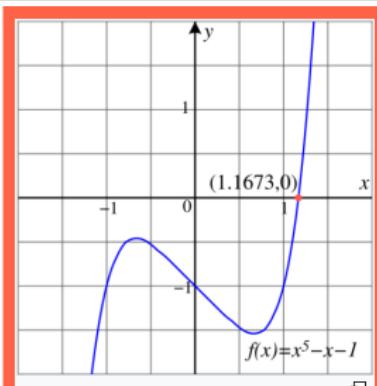
Or: Where do Lie groups come from?

Origins!



- Lie theory = the mathematics of continuous/smooth symmetry
- Origins Polynomials \leadsto finite symmetry, differential equations \leadsto smooth symmetry
- Today's slogan “Symmetry of equations \Rightarrow a group” (discrete vs. continuous)

Origin story I: symmetries of polynomial equations



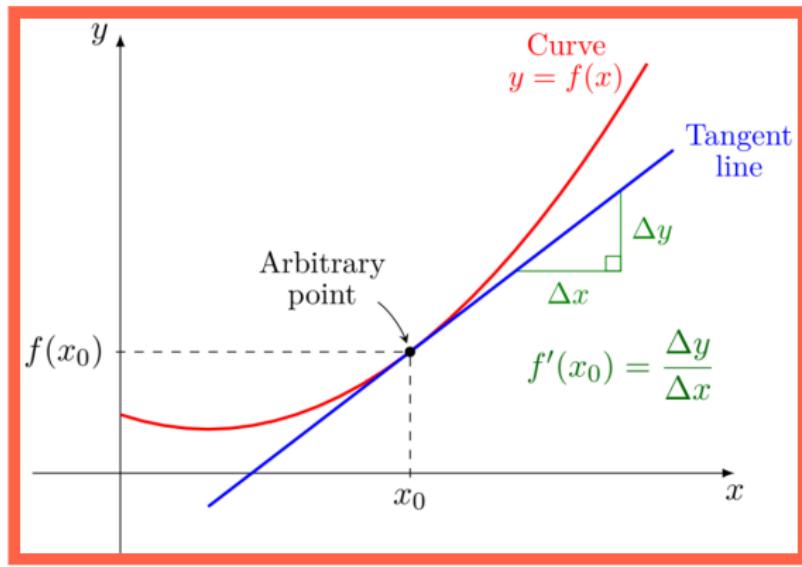
Symmetry group is S_5

For the polynomial $f(x) = x^5 - x - 1$, the lone real root $x = 1.1673\dots$ is [algebraic](#), but not expressible in terms of radicals. The other four roots are [complex numbers](#).

□

- ▶ Polynomial equation $f(x) = 0$ has finitely many roots
- ▶ Symmetry Permute the roots without changing any algebraic relations over the base field \Rightarrow a subgroup of the symmetric group S_n
- ▶ Galois group = finite group capturing the root symmetries (solvability controlled “by radicals”)

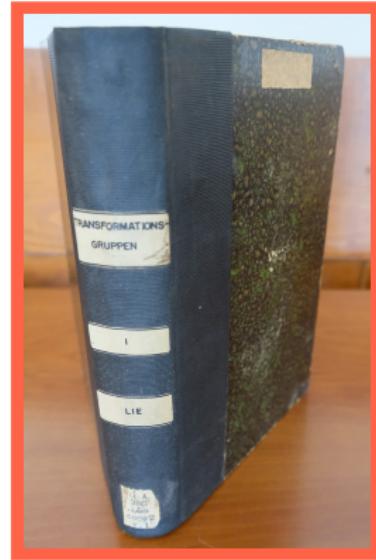
Why discrete?



- ▶ Polynomials have **finitely many** roots
- ▶ **Typical outcome** The symmetry group is finite (often even S_n): it is about combinatorics of roots, not smooth motion
- ▶ **Enter: geometry and calculus** For “continuous symmetry” you need a setting where transformations can vary smoothly

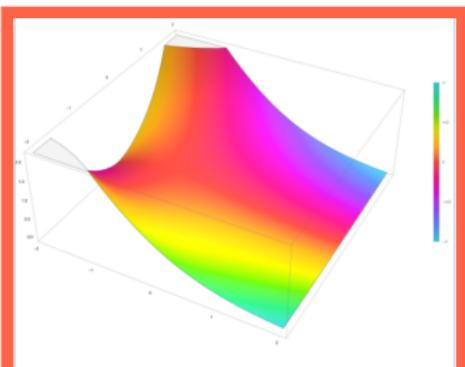
Origin story II: symmetries of differential equations (DE)

Lie:

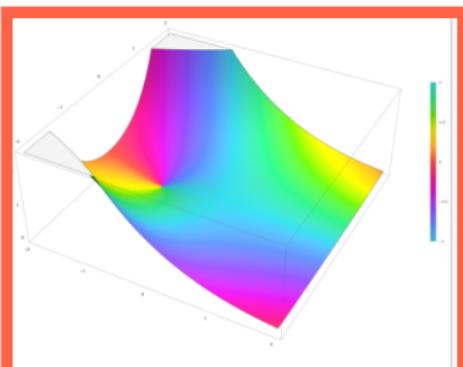


- A transformation g is a **symmetry** of a DE if it sends solutions to solutions
- **Continuous families** If symmetries depend smoothly on parameters (translations, rotations, scalings, ...), they form a Lie group
- **This is where they originate** Lie (1870s) wanted a continuous version of Galois' theory (1830s)

Example: a DE with a (continuous) symmetry group



Plot of the Airy function $Ai(z)$ in the complex plane from $-2 - 2i$ to $2 + 2i$ with colors created with Mathematica 13.1 function ComplexPlot3D



Plot of the derivative of the Airy function $Ai'(z)$ in the complex plane from $-2 - 2i$ to $2 + 2i$ with colors created with Mathematica 13.1 function ComplexPlot3D

- Airy equation (1838) $y'' - xy = 0$ (two famous solutions: $Ai(x)$, $Bi(x)$.)
- Differential Galois group The “continuous Galois group” over $\mathbb{C}(x)$ is $SL_2(\mathbb{C})$
- Consequence Since $SL_2(\mathbb{C})$ is not solvable, the equation has no “elementary” solution: you must leave the zoo and use special functions

Thank you for your attention!

I hope that was of some help.