
What is...the symmetric algebra?

Or: Polynomials in vector spaces.



Let us look at polynomials
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Many similarities, but two crucial differences:

I Diagonals survive vs. diagonals are annihilated

I Commuting variables vs. anticommuting variables



The permanent

How to get
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= afh + aei + bfg + bdi + ceg + cdh?

Multiply polynomials:

(aX1 + dX2 + gX3)(bX1 + eX2 + hX3)(cX1 + fX2 + iX3) =

(afh + aei + bfg + bdi + ceg + cdh)X1X2X3

+a lot of other summands

This was a calculation in degree 3 of the symmetric algebra
Sym(X1,X2,X3) = R〈X1,X2,X3〉/(XiXj = XjXi ).



Lets count dimensions

Write Symk(X1,X2,X3) for polynomials of degree k in Sym(X1,X2,X3).

I Sym0(X1,X2,X3) is spanned by {1}
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I All others are
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, and the total dimension is ∞

dim Sym(X1,X2,X3) =∞
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dimSym(X1, ...,Xn) =∞



For completeness: A formal definition.

The exterior algebra Sym(V ) of a vector space V over a field (say not of
characteristic 2) is defined as the quotient algebra of the tensor algebra T(V ) by

the two-sided ideal I generated by the relation

X ⊗ Y = Y ⊗ X

I Very often one writes e.g. X · Y or XY for the image of X ⊗ Y under the
canonical surjection T(V )� Sym(V )

I Note that X · X 6= 0 in Sym(V )

I If we choose a basis {Xi} of V , then Sym(V ) is the polynomial ring in
commuting variables {Xi}



Some combinatorics in this story

Take the symmetric group and act on R[X1,X2,X3] by permuting the variables.
Symmetric polynomials? These are fixed by permutation, e.g.
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degree polynomials symmetric basis
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These are symmetric polynomials are also called symmetric tensors and they live
inside the symmetric algebra (but honestly, so they are not spanning it).



Thank you for your attention!

I hope that was of some help.


