What is...machine learning in mathematics - part 5?

Or: Formula guessing

People like continued fractions

Continued fraction = an expression as above

• Every $x \in \mathbb{R}$ has a continued fraction expression, e.g. $\pi \approx 3 + 1/7 = 22/7$

Fact People love them: there are many continued fraction expressions

They really like them

- Fact Every $x \in \mathbb{R}$ has multiple such expressions
- Question How to find such formulas?
- Question refined How to find efficient formulas?

A simple algorithm

- Ramanujan machine = two algorithms based on matching numerical values
- It conjectures formulas without requiring any prior knowledge on any underlying mathematical structure
- Idea Computer utilizing numerical data to unveil mathematical structures

The Ramanujan machine automated conjectures formulas for "famous" constants e.g.

$$1 + \pi/2 = 3 - 2/(6 - ...)$$

They tested the conjectures for up to 2000 digits of accuracy; several are proven

- ► Great This is an open source project and interacts with the community
- ► Here is a list of conjectured formulas

Novelty	Formula	Polynomials	Convergence [digits]
new and proven	$\frac{1+e}{-1+e} = 2 + \frac{1}{6+\frac{1}{10+\frac{1}{14+\lambda}}}$	$a_n = 4n + 2, \ b_n = 1$	5.4905 *
new and proven	$\frac{3}{3-c} = 11 - \frac{10}{29 - \frac{28}{10 - \frac{24}{89 - 53}}}$	$a_n = 2n(2n + 7) + 11$, $b_n = -2n(2n + 3)$	4.9048 *
new and proven	$1 + \frac{e}{e-2} = 5 - \frac{4}{19 - \frac{18}{41 - \frac{18}{71 - \frac{19}{21}}}}$	$a_n = 2n(2n + 5) + 5$, $b_n = -2n(2n + 1) + 2$	4.9018 *
new and proven	$\frac{e}{-24+9e} = 6 - \frac{1}{7 - \frac{2}{s - \frac{3}{9 - 4}}}$	$a_n = 6 + n, \ b_n = -n$	2.1756 *
new and proven	$\frac{e}{6-2e} = 5 - \frac{1}{6 - \frac{2}{7 - \frac{3}{8 - 4}}}$	$a_n = 5 + n, \ b_n = -n$	2.1698 *
new and proven	$\frac{1}{-16+6e} = 3 + \frac{1}{4 + \frac{2}{5 + \frac{3}{6 + A}}}$	$a_n = 3 + n, \ b_n = n$	2.1695 *
new and unproven	$\frac{6e}{-3+2e} = 7 - \frac{4}{14 - \frac{20}{23 - \frac{20}{34 - 212}}}$	$a_n = n(n + 6) + 7$, $b_n = -(n + 3)n^2$	2.164 *
new and proven	$\frac{e}{-2+e} = 4 - \frac{1}{5 - \frac{2}{6 - \frac{3}{7 - 3}}}$	$a_n = 4 + n, \ b_n = -n$	2.164 *
new and proven	$\frac{1}{-5+2e} = 2 + \frac{1}{3 + \frac{2}{4 + \frac{3}{5+3}}}$	$a_n = 2 + n, \ b_n = n$	2.1638*
new and unproven	$\frac{3}{-10+4e} = 3 + \frac{4}{8 + \frac{20}{15 + \frac{21}{24 + MZ}}}$	$a_n = (n + 1)(n + 3), \ b_n = -(n + 3)n^2$	2.1638 *
new and proven	$e = 3 - \frac{1}{4 - \frac{2}{1 - \frac{2}{q - X}}}$	$a_n = 3 + n, \ b_n = -n$	2.1581*
new and proven	$\frac{1}{-2+e} = 1 + \frac{1}{2+\frac{2}{3+\frac{2}{4+x}}}$	$a_n = 1 + n, \ b_n = n$	2.158 *
known	$\frac{1}{-1+\epsilon} = \frac{1}{1+\frac{2}{2+\frac{3}{3+3}}}$	$a_n = n, \ b_n = n$	2.1522 *
new and proven	$\frac{e}{-1+e} = 2 - \frac{1}{3 - \frac{2}{4 - \frac{3}{5 - X}}}$	$a_n = 2 + n, \ b_n = -n$	2.1522 *
new and unproven	$\frac{4e}{-1+2e} = 3 - \frac{3}{7 - \frac{36}{12 - \frac{48}{21 - 22}}}$	$a_n = n(n+3) + 3$, $b_n = -(n+2)n^2$	2.1493 *

Not quite!

- Catch The Ramanujan machine uses very simple reasoning
- ► Ramanujan's original formulas are much more impressive
- ► Next step Maybe some more sophisticated AI can produce better results

Thank you for your attention!

I hope that was of some help.