What is...order theory?

Or: Subfields of mathematics 13

Universal algebra (UA)

Boolean Algebra Operations

- ► The study of UA originates in early computer science
- ► Early example: Boolean algebra = something that mimics true/false logic
- ▶ Order theory (OT) \subset UA that focuses on order relations e.g. $x \land y < x$

Hasse diagram

- lacktriangle Partial ordered set = a set with \le satisfying reflexivity, antisymmetry and transitivity
- **Example** The divisors of 60 with $x \le y$ if x divides y
- ► A first tool from OT: a Hasse diagram illustrates partial orders

Lattices

- ► Lattice = partial ordered set with meets ∧ and joins ∨
- **Example (above)** The lattice \mathbb{N}^2 ordered componentwise
- ightharpoonup Example There is also \mathbb{N}^2 with lexicographical order

8 Enter, the theorem

The Tamari lattice is a lattice of size C_n

Vertices = groupings of n elements, \leq application of the rightwards (ab)c = a(bc)

- ightharpoonup = the nth Catalan number
- ► The Tamari lattice has several different incarnations
- ► Order theory answers similar questions!

Associativity and trees

- ► Tamari lattice = lattice of binary trees up to rotation
- ► The count of vertices is again given by the Catalan numbers
- ▶ There are many more structures that are counted by Catalan numbers

Thank you for your attention!

I hope that was of some help.