What is...diagrammatic algebra?

Or: Subfields of mathematics 17

Swapping factors

► Take the swap map : $\bullet^2 \to \bullet^2, (x, y) \mapsto (y, x)$

Above The diagrammatic algebra of the swap map

Pairing factors

- ▶ Say we have some $\mathbb{C} = \mathbb{1}$ vector space •; consider •^{*d*} = ⊗ ... ⊗ •
- ▶ Take a (nondegenerate symmetric) pairing map : $\bullet^2 \to 1, x \otimes y \mapsto \langle x, y \rangle$ (identify • with its dual); take the copairing $1 \to \bullet^2, 1 \mapsto \sum_{basis} x \otimes x^*$
 - Above The diagrammatic algebra of the (co)pairing maps

Swapping and pairing

- ▶ Say we have some $\mathbb{C} = \mathbb{1}$ vector space ; consider •^d = ⊗ ... ⊗ •
- ► Take swapping and pairing together
- ► Above The diagrammatic algebra of the swapping and (co)pairing maps Br

Br gives diagrammatics of orthogonal $O_n(\mathbb{C})$ or symplectic $SP_n(\mathbb{C})$ invariants

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

(Received March 5, 1937)

1. Introduction. We consider a group 60 of linear transformations in an admensional vector space V_{*}. It transformation 60 of 60 is performed, the components of a general tensor of rank f undergo a linear transformation 30, role at these M₂(r) form a representations. In particular, we have to add the M₂ and the M₂ are the M₂ and the M₂ are the M₂ and the M₂ are the M₂ and the M₂ and the M₂ are the M₂ and the M₂ and the M₂ are the M₂ and the M₂ and the M₂ are the M₂ and the M₂ are the M₂ and the M₂ are the M₂ are the M₂ and the M₂ and the M₂ are the M₂ are

- Formally There is a full and essentially surjective functor $Br \rightarrow Rep(O)$ or Rep(SP), and the 'kernel' can also be described
- ▶ Comment $GL_n(\mathbb{C})$ does not have a natural pairing, hence $O_n(\mathbb{C})$, $SP_n(\mathbb{C})$
- Diagrammatic algebra answers similar questions!

Diagrams are everywhere

Thus

+8 [8<75>+4<38>]. $\langle \Im \rangle = (ABd + A^2 + B^2) \langle = \rangle + AB \langle \supset \subset \rangle.$ Hence

This completes the proof.

Diagrammatic algebra seems to originate in 19th century invariant theory

- However, it took much longer to fly
- 'Modern' examples Penrose/Feynman diagrams, quantum topology ...

Thank you for your attention!

I hope that was of some help.