What is...invariant theory?

Or: Subfields of mathematics 18

Group actions rule!

The Erlangen Programme

- Above The Erlangen program
- Slogan Group actions describe many properties
- ► Several fields originate or habe connections to the Erlangen program

Symmetries of simplices

• $S_n = Aut(\{1, ..., n\})$, the symmetric group, acts on a simplex

- \blacktriangleright S_n determines the symmetries of a simplex
- ► Invariant theory question What are the fixed points? "Invariant ↔ fixed"

Invariant polynomials

For $n = 1$:
$e_1(X_1)=X_1.$
For $n = 2$:
$e_1(X_1,X_2) = X_1 + X_2, \\$
$e_2(X_1,X_2) = X_1 X_2.$
For <i>n</i> = 3:
$e_1(X_1,X_2,X_3)=X_1+X_2+X_3,\\$
$e_2(X_1,X_2,X_3)=X_1X_2+X_1X_3+X_2X_3,\\$
$e_3(X_1,X_2,X_3)=X_1X_2X_3.$
For $n = 4$:
$e_1(X_1,X_2,X_3,X_4)=X_1+X_2+X_3+X_4,\\$
$e_2(X_1,X_2,X_3,X_4)=X_1X_2+X_1X_3+X_1X_4+X_2X_3+X_2X_4+X_3X_4,$
$e_3(X_1,X_2,X_3,X_4) = X_1X_2X_3 + X_1X_2X_4 + X_1X_3X_4 + X_2X_3X_4,$
$e_4(X_1,X_2,X_3,X_4)=X_1X_2X_3X_4.$

- Extend the previous action linearly \Rightarrow fixed point $x_1 + ... + x_n$
- $x_1 + ... + x_n$ spans the degree one invariants
- ▶ Idea Why not extend the action to the whole polynomial ring $\mathbb{C}[x_1, ..., x_n]$

Let $\mathbb{C}[x_1, ..., x_n]^{S_n}$ denote the invariants under the previous action

(i) $\mathbb{C}[x_1,...,x_n]^{S_n} =$ symmetric polynomials

- (ii) Symmetric polynomials are spanned by elementary symmetric polynomials e_k
- (iii) The e_k are algebraically independent

(iv) $\mathbb{C}[x_1,...,x_n]^{S_n} \cong \mathbb{C}[e_1,...,e_n]$ Another polynomial ring

► This is a bit like:

Invariant theory answers similar questions!

A more standard example

Above The (abs of the) determinant is the area of the parallelogram

▶ Classical question What are the invariants of $SL_n(\mathbb{C})$ acting on n-by-n matrices by left multiplication?

• Answer
$$\mathbb{C}[Mat_n]^{SL_n(\mathbb{C})} \cong \mathbb{C}[det]$$

Thank you for your attention!

I hope that was of some help.