$\label{lem:what is...complexity theory?} What is...complexity theory?$

Or: Subfields of mathematics 19

Algorithms rule the world

- ► Algorithm = a finite sequence of mathematical instructions
- ▶ These are perfect for a computer; so they are everywhere
- ► Crucial question How difficult is it to use algorithm XYZ?

Landau-Bachmann notation

- ▶ Above Landau-Bachmann notation: Θ (both), Ω (bottom), O (top)
- ▶ Task Find, say, $f(n) \in O(\text{nice function})$ for f(n) = function for algorithm
- **Example** f(n) = time complexity, space complexity etc. of the fixed algorithm

Example: multiplication algorithms

$$xy = (a \times 10^{1/2} + b)(x \times 10^{1/2} + b)$$
 $xy = (a \times 10^{1/2} + b)(x \times 10^{1/2} + b)$
 $xy = (a \times 10^{1/2} + b)(x \times 10^{1/2} + b)$

- ▶ Standard integer multiplication is in $O(n^2)$, with n = number of digits
- ► Karatsuba integer multiplication is in $O(n^{\log_2 3 \approx 1.58})$
- ► This is great and implemented in many programming languages

Enter, the theorem

Actually, integer multiplication is in $O(n \log n)$

- ► It is even conjectured that this is optimal
- ► Catch This is not practical due to overhead
- ► Complexity theory answers similar questions!

A more theoretic framework

- ► Complexity theory also studies complexity classes
- **Example** NP complete problems \approx "all potential algorithm are exponential"
- ► Example (right) Several problems that are NP complete ≈ "just difficult"

Thank you for your attention!

I hope that was of some help.