What is...game theory?

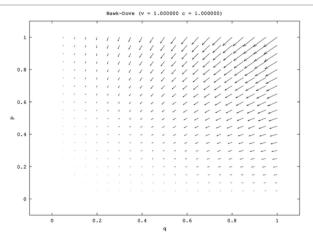
Or: Subfields of mathematics 20

Game: hawk vs. dove

- ► Hawk strategy Always attack
- ▶ Dove strategy Retreat unless you see a dove
- ightharpoonup Game Reward = V, damage = C
 - ▶ Hawk-meets-hawk: both fight, get some of the reward and also hurt
 - ► Hawk-meets-dove: hawk gets the reward
 - ▶ Dove-meets-dove: both share the reward

Payoff matrix

	Hawk	Dove
Hawk	(V-C)/2, (V-C)/2	V, 0
Dove	0, V	V/2, V/2

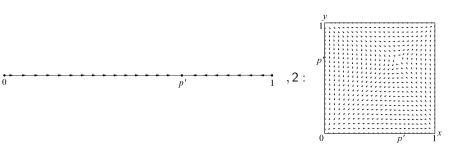

- **Explicit example** For V = 2 and C = 4 we get

$$\begin{pmatrix} -1, -1 & 2, 0 \\ 0, 2 & 1, 1 \end{pmatrix}$$

 \blacktriangleright Question How does the system change depending on V, C?

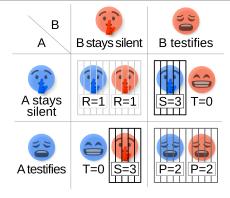
Payoff matrix = a way to express the result of players' choices

Evolution of the system



- ▶ Above The best response mapping for players p and q
- ► The percentage ← player chooses dove
- ▶ What we are interested in are fixed points of the system

Enter, the theorem


There are two crucial differences:

- (i) In the one population model (a single population which plays against itself) every initial population proportion (except all hawk and all dove) converge to the mixed strategy below
- (ii) In the two population model (two populations play against each other) the only stable state (pure strategy) is below

- ▶ How does this applies to real-world politics? Unclear ☺
- ► Game theory answers similar questions!

Prisoner's dilemma

- ▶ Above For $C \le V$ this becomes the famous prisoner's dilemma
- ► Payoff matrix could be

$$\begin{pmatrix} -1, -1 & -3, 0 \\ 0, -3 & -2, -2 \end{pmatrix}$$

► Tiny catch Here the 'reward' needs to be negative

Thank you for your attention!

I hope that was of some help.