What is...automated mathematics?

Or: Subfields of mathematics 24

### No humans, please!



- ► Mathematics is, at least partially, about good conjectures
- Computers are nowadays key for the art of conjecturing
- ► Early example The Birch–Swinnerton-Dyer conjecture was discovered by computer
- ► There are **3 stages** of conjecturing: computer assisted, AI assisted and, as in this video, without humans

### Stage 3: Example



# Stage 3 Automated conjecturing

- ► Graffiti (a program that knows certain graphs and graph properties, ~1985) creates conjectures by data search, trying to match graph+property
- Bait-and-catch No human input at all, but the setting is very restricted and almost all conjectures are rather boring

A reminder from graph theory



- $\alpha(G)$  = size of a maximum independent vertex set
- $\mu(G)$  = size of a maximum independent edge set

It is impressive what Graffiti and follow-ups conjectured, and a lot of it was proven, e.g.:

(i) Example conjecture and proof

Listing 7 Example Conjecture

Conjecture 9. If G is connected and regular, then matching\_number(G) >=
independence\_number(G). This bound is sharp on 3 graphs.

Theorem 1 (Caro et al. [64]). If G is an r-regular graph with r > 0, then

 $\alpha(G) \le \mu(G),$ 

and this bound is sharp.

## (ii) More conjectures and proofs

| Conjecture                             | Graph Family           | Authors and Publication |
|----------------------------------------|------------------------|-------------------------|
| $\alpha(G) \le \mu(G)$                 | regular graphs         | Caro et al. [64]        |
| $Z(G) \le \beta(G)$                    | claw-free graphs       | Brimkov et al. [65]     |
| $\alpha(G) \le \frac{3}{2}\gamma_t(G)$ | cubic graphs           | Caro et al. [66]        |
| $\alpha(G) \le \gamma_2(G)$            | claw-free graphs       | Caro et al. [66]        |
| $\gamma_e(G) \ge \frac{3}{5}\mu(G)$    | cubic graphs           | Caro et al. [66]        |
| $Z(G) \le 2\gamma(G)$                  | cubic graphs           | Davila and Henning [67] |
| $Z_t(G) \le \frac{3}{2}\gamma_t(G)$    | cubic graphs           | Davila and Henning [68] |
| $Z(G) \le \gamma(G) + 2$               | cubic claw-free graphs | Davila [69]             |

Table 2 Notable conjectures in graph theory generated by *TxGraffiti* and their corresponding publications.

- ▶ Automated mathematics = no humans ©(for theorems, conjectures, ...)
- Automated mathematics answers similar questions!

### Not just graph theory

| C.E. Larson, N. Van Cleemput / Artificial Intelligence 231 (2016) 17–38          |        |        |                                                                               |  |
|----------------------------------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------|--|
| Table 2<br>Upper bound conjectures for the determinant of a symmetric matrix.    |        |        |                                                                               |  |
| 1.                                                                               | det(x) | <      | permanent(x)                                                                  |  |
| 2.                                                                               | det(x) | 5      | minimum_eigenvalue(x)*trace(x)                                                |  |
| 3.                                                                               | det(x) | ≤      | maximum_eigenvalue(x)*trace(x)                                                |  |
| 4.                                                                               | det(x) | ≤      | (rank(x) + 1)*spectral_radius(x)                                              |  |
| 5.                                                                               | det(x) | $\leq$ | permanent(x)+max_column_sum(x)+1                                              |  |
| 6.                                                                               | det(x) | $\leq$ | maximum(rank(x),minimum_eigenvalue(x)^2)                                      |  |
| 7.                                                                               | det(x) | $\leq$ | <pre>maximum_eigenvalue(x)*minimum(minimum_eigenvalue(x), trace(x) + 1)</pre> |  |
| 8.                                                                               | det(x) | $\leq$ | minimum_eigenvalue(x)*minimum(trace(x),maximum_eigenvalue(x))                 |  |
| 9.                                                                               | det(x) | $\leq$ | <pre>maximum_eigenvalue(x)^l_inf_norm(x) + separator(x)</pre>                 |  |
| 10.                                                                              | det(x) | $\leq$ | <pre>trace(x)*average_eigenvalue(x) - permanent(x)</pre>                      |  |
| 11.                                                                              | det(x) | $\leq$ | (maximum_eigenvalue(x)+1)*minimum_eigenvalue(x)+frobenius_norm(x)             |  |
| Table 3       Lower bound conjectures for the determinant of a symmetric matrix. |        |        |                                                                               |  |
|                                                                                  | 1.     | det(x) | ≥ minimum_eigenvalue(x)*separator(x)                                          |  |
|                                                                                  | 2.     | det(x) | $\geq$ minimum(permanent(x), log(nullity(x)))                                 |  |
|                                                                                  | 3.     | det(x) | > -2*1_inf_norm(x)^nrows(x) + permanent(x)                                    |  |
|                                                                                  | 4.     | det(x) | > -(separator(x) - 1)*frobenius_norm(x) + permanent(x)                        |  |
|                                                                                  | 5.     | det(x) | > -1_inf_norm(x)*frobenius_norm(x)                                            |  |
|                                                                                  | 6.     | det(x) | > minimum(rank(x)-1, minimum_eigenvalue(x)/nullity(x))                        |  |
|                                                                                  | 7.     | det(x) | $\geq$ -4*1_inf_norm(x)^2 + permanent(x)                                      |  |
|                                                                                  |        |        |                                                                               |  |

- ▶ The same strategy has been applied in many fields
- Example above Conjectures about matrices
- Missing This method gives also many 'boring' conjectures its a bit 'test all' instead fo something smarter – unclear how to fix this in 2024

Thank you for your attention!

I hope that was of some help.