What is...numerical linear algebra?

Or: Subfields of mathematics 27

- Above Streamlines of the vector field M(x, y) for the M as above
- ▶ The eigenvector are visible: they correspond to fixed lines
- Eigenvector/values "=" fixed lines/magnitudes of them

Real-world applications? Sure!

- The 1940 Tacoma Narrows Bridge dramatically collapsed probably due to resonance effects
- Resonance problems "are" EV problems!
- Crucial Is it easy to calculate EVs in a "good" way?

QR = no-changes-times-easy

▶ Problem "Roots of det(M - x · Id)" is not a great way to compute EVs
▶ Better Use the M = QR decomposition, Q = orthogonal, R = upper △
▶ orthogonal "=" rotation → no EV change (not quite true); upper △ → easy EVs

► Upon correct implementation, this has way more upshots, *e.g.* is quite fast, is numerically stable, *etc.*

Numerical linear algebra answers similar questions!

Algorithms of the century

Above From the IEEE Computer Society Journal

No such list can be perfect but that QR iteration made it on it should tell us something ©

Thank you for your attention!

I hope that was of some help.