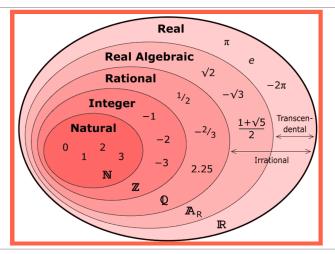
What is...algorithmic number theory?

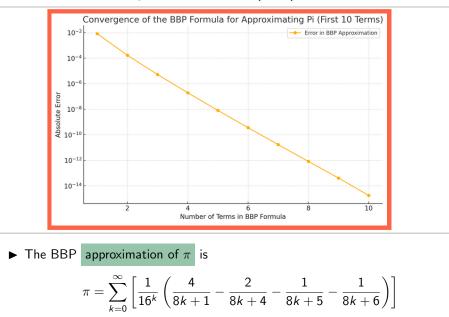
Or: Subfields of mathematics 30

Transcendental number checker



- ▶ Transcendental number = no relation $a_0 + a_1x + ... + a_nx^n = 0$ for $a_i \in \mathbb{Q}$
- **Task** Determine whether a given number is transcendental
 - Problem This is super hard; how can we check this even numerically?

Bailey-Borwein-Plouffe (BBP) formula



How on earth can one find such a formula?

Euclid's famous algorithm

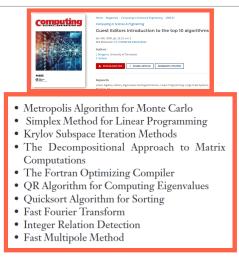
Compute the Euclidean algorithm step by step	Compute the Euclidean algorithm step by step
a = 1071; b = 462	a = 4736; b = 462
$1071 = q_0 \times 462 + r_0$ $q_0 = 2; r_0 = 147$	$\begin{array}{l} 4736 = q_0 \times 462 + r_0 \\ q_0 = 10; r_0 = 116 \end{array}$
$462 = q_1 \times 147 + r_1$	$462 = q_1 \times 116 + r_1$ $q_1 = 3; r_1 = 114$
$q_1 = 3; r_1 = 21$	$\frac{q_1 = 3, r_1 = 114}{116 = q_2 \times 114 + r_2}$
$147 = q_2 \times 21 + r_2$	$q_2 = 1; r_2 = 2$
$q_2 = 7; r_2 = 0$	$114 = q_3 \times 2 + r_3$
Since $r_2 = 0$ the algorithm is finished. Thus GCD(1071, 462) = 21.	$q_3 = 57$; $r_3 = 0$ Since $r_3 = 0$ the algorithm is finished. Thus GCD(4736, 462) = 2.
Restart	Restart

- Bézout's identity ax + by = d is a special case of $a_1x_1 + ... + a_nx_n = 0$ (integer relation)
- ► Euclid's algorithm finds *d* ridiculously fast (number of steps ≤ five times the number of base 10 digits)

Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm can find integer relations in polynomial time

- ► This has been improved upon several times (HJLS, PSOS, PSLQ, ...)
- For $\{1, x, x^2, ..., x^n\} \Rightarrow$ a numeric check whether a number is transcendental
- ▶ PSLQ gave the BBP formula: see Analysis of PSLQ, an integer relation algorithm
- Algorithmic number theory answers similar questions!

Algorithms of the century



Above From the IEEE Computer Society Journal

No such list can be perfect but integer relation made it on it should tell us something ©

Thank you for your attention!

I hope that was of some help.