What is...discrete analysis?

Or: Subfields of mathematics 31

Integer multiplication

- Given two polynomials f and g of degree < n; we want fg
- ▶ Naive polynomial multiplication needs n^2 multiplications and $(n-1)^2$ additions; thus $mult(poly) \in O(n^2)$
- ▶ Ditto for integer multiplication with n = number or digits

Fast multiplication?

• Assume that there is an operation DFT_{ω} such that:

$$fg = DFT_{\omega}^{-1}(DFT_{\omega}(f)DFT_{\omega}(g))$$

with DFT_{ω} and DFT_{ω}^{-1} and $DFT_{\omega}(f)DFT_{\omega}(g)$ being cheap

▶ Then compute *fg* for polynomials *f* and *g* is cheap

DFT = discrete FT (= Fourier transform)

- Fourier transform translates between convolution ("pointwise") and multiplication of functions
- Slogan Convolution = area obtained by sliding f through g

▶ Essentially, the DFT (group $\mathbb{Z}/n\mathbb{Z}$) is a discrete version of the FT (group \mathbb{Z})

- ► \Rightarrow Integer multiplication is in $O(n \log n)$
- ► Discrete analysis answers similar questions!

Algorithms of the century

Above From the IEEE Computer Society Journal

No such list can be perfect but that FFT/DFT made it on it should tell us something ©

Thank you for your attention!

I hope that was of some help.