Or: Subfields of mathematics 7



Combinatorics = counting
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» (Enumerative) combinatorics = how many objects of type XYZ are there
» Example The number of different possible orderings of a deck of n cards is n!

» Counting takes '/many forms : closed formulas, recursions, ...



Good example: counting colored trees

/k/k//&

W/\/VY“K‘¢ o
ANNNAT DA

A

ANANNANND AN

» The number of colored trees on n -+ 1 vertices is -

» Above things are shifted and usually people write n"—2

» Many proofs are known and they are (brilliant but also) -



Bad example: counting trees
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» The number of trees on n vertices is | 727

/

» Turns out that counting trees is |very difficult

» Other 'non-counting| approaches are needed



Enter, the theorem

The number of trees T(n) with n vertices satisfies _
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for A ~2.996, 3 ~ 0.535

» ~ means asymptotically equal, i.e. _
» This is an example of _

» Analytic combinatorics answers similar questions!




Patterns in randomness
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» Prime numbers appear essentially randomly, they mostly look like 'noise
» However, also 'many patterns| can be observed

» Analytic combinatorics takes a as analytic number theory;

just for numbers coming up in combinatorics



| hope that was of some help.



