What is...an inverse fractal?

Or: Zooming out

Inverse fractals - discrete self-similarity

- Fractal $=$ something that is self-similar, an object of dynamics
- Inverse fractal = the same, but as an object of counting
- Example Sierpiński's triangle versus Pascal's triangle mod 2

Divide and conquer

- Let us say we have an algorithm that takes n^{2} operations
- Let us say we find a way to safe $1 / 4$ operations
- Recursion then gives an inverse fractal

Coin toss

- Let us say we toss a coin
- Now write down the graph of heads versus tails
- Almost always this is an inverse fractal

Enter, the theorem

There are three fractal graphs (inverse fractals) on ∞ countably many vertices (i) The graph without edges (boring!)
(ii) The complete graph (boring!)
(iii) The Rado graph:

- Fractal graph (definition for this video) = every partition of the graph into finitely many parts has some subgraph isomorphic to the original graph
- Rado graph = infinite coin flip graph

More inverse fractal in combinatorics

- Zoo of examples Representation theory of $G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$ and friends
- Zoo of examples Representation theory of symmetric groups over $\overline{\mathbb{F}}_{p}$
- This is one reason why these two are so difficult

Thank you for your attention!

I hope that was of some help.

