What is...an inverse fractal?

Or: Zooming out

Inverse fractals - discrete self-similarity

- ► Fractal = something that is self-similar, an object of dynamics
- ► Inverse fractal = the same, but as an object of counting
- ► Example Sierpiński's triangle versus Pascal's triangle mod 2

Divide and conquer

- lacktriangle Let us say we have an algorithm that takes n^2 operations
- ► Let us say we find a way to safe 1/4 operations
- ► Recursion then gives an inverse fractal

Coin toss

- ► Let us say we toss a coin
- ► Now write down the graph of heads versus tails
- ► Almost always this is an inverse fractal

Enter, the theorem

There are three fractal graphs (inverse fractals) on ∞ countably many vertices

- (i) The graph without edges (boring!)
- (ii) The complete graph (boring!)
- (iii) The Rado graph:

- ► Fractal graph (definition for this video) = every partition of the graph into finitely many parts has some subgraph isomorphic to the original graph
- ► Rado graph = infinite coin flip graph

More inverse fractal in combinatorics

- lacktriangle Zoo of examples Representation theory of $GL_n(\bar{\mathbb{F}}_p)$ and friends
- **Zoo of examples** Representation theory of symmetric groups over $\bar{\mathbb{F}}_p$
- ► This is one reason why these two are so difficult

Thank you for your attention!

I hope that was of some help.