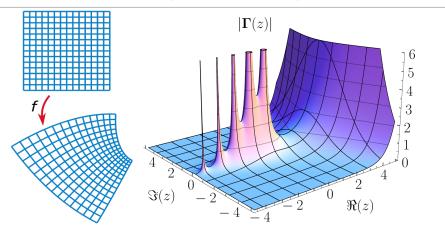
What is...the Riemann–Roch theorem?

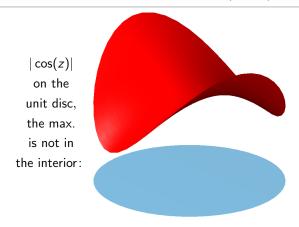
Or: Allowing poles

Holomorphic versus meromorphic



- ► Holomorphic function = complex analytic = polynomials, sin *z*,...
- Meromorphic function = complex analytic up to isolated poles = holomorphic, rational functions, 1/sin z,...
 - Question How different are these?

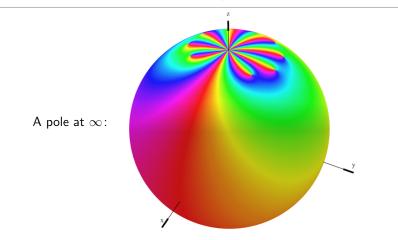
Maximum modulus principle (MMP)



- ▶ MMP A holomorphic $f: U \to \mathbb{C}$ cannot have a strict maximum on a connected open set $U \subset \mathbb{C}$
- ▶ This implies that the only holomorphic maps $S^2 \to \mathbb{C}$ are constants

▶ This is exciting and disappointing at the same time

Riemann's question



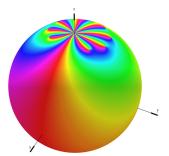
- Previous slide There is essentially only one holomorphic map $S^2 o \mathbb{C}$
- Question How many maps are there if we allow poles?
- ► Task Find a lower bound for #maps in terms of the number of poles

Non-constant meromorphic functions exist, i.e.

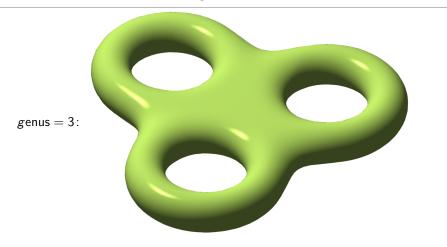
$$\dim l(n_1, ..., n_r) \ge n_1 + ... + n_r + 1$$

where $n_i \ge 0$

- ► Here l(n₁,..., n_r) = space of meromorphic functions S² → C that are allowed to have r poles of order at most n_i
- Example If r = 1 and $n_1 = 1$ then we get dim $l(1) \ge 2$, so there is a non-constant function



Three generalizations



Allow negative n_i Then we can also count zeros of functions

- Allow other surfaces Then dim $l(n_1, ..., n_r) \ge n_1 + ... + n_r g + 1$
- Roch There is also an equality using a correction term

Thank you for your attention!

I hope that was of some help.