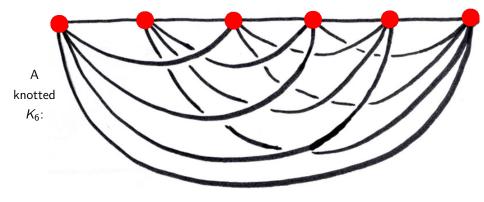
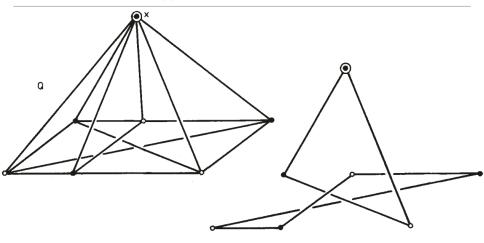

What are...intrinsically linked graphs?

Or: Difficult problem, easy solution

(Kuratowski-)Wagner theorem

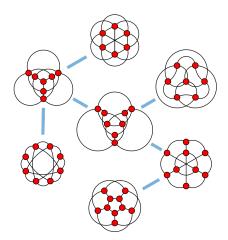


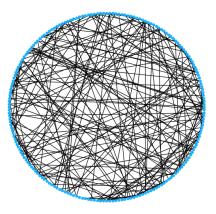
• Theorem $K_{3,3}$ and K_5 are witnesses for planarity testing

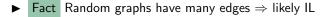

• Consequence Recognizing planarity is in $O(n^3)$ for n = #vertices

Knotted graphs

- Fact Every graph can be embedded in \mathbb{R}^3
- Question Can one draw a graph in 3-space \mathbb{R}^3 without knotting?
- Unclear!? Can anything be said?


 $K_{3,3,1}$ is intrinsically linked (IL)


- IL = every embedding contains a non-trivial link
- Proof of headline $K_{3,3,1}$ is IL $\Leftrightarrow K_{3,3}$ is not planar
- Recall $K_{3,3}$ is indeed not planar


IL testing is in $O(n^3)$

- ► This bound is quite naive one can likely do better
- ► Theorem There are only seven witnesses:

"All" graphs are IL

- "Most" graphs are random
- Theorem Almost all graphs are IL

Thank you for your attention!

I hope that was of some help.