What is...the Cantor sequence?

Or: 101000101...

Cantor's set

Cantor's set $=$ remove the middle third of a line segment and repeat

- This set is the prototype of a fractal; dimension is $\log _{3} 2 \approx 0.631$

Task Make it discrete!

Cantor's sequence

- Cantor's sequence $c a_{n}$:

$$
\mathrm{ca}_{n}= \begin{cases}1 & \text { if the ternary expansion of } n \text { contains no } 1 \\ 0 & \text { otherwise. }\end{cases}
$$

- This is like the Cantor set stretched over \mathbb{N}

Cantor's sum

- Whenever a sequence is going up and down take the sum $b_{n}=\sum_{k=1}^{n} c a_{k}$
- $b_{n} / n=$ average of the Cantor set sequence
- Task Understand b_{n}

Enter, the theorem

Asymptotically we have

$$
b_{n} \sim h(n) \cdot n^{-\log _{3} 2}
$$

for a bounded function h

- The factor $\log _{3} 2$ is the dimension of the Cantor set
- h approaches ("is") devil's staircase (Cantor's function):
- $\mathrm{n}^{\wedge}(-0.631) \star$ Sum Cantor

SL2, my friend

Cédric Bonnafé

ALGEBRA AND APPLICATIONS

Representations

 of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$- SL2 $=2$-by- 2 matrices with det $=1$, say with entries in $\overline{\mathbb{F}}_{3}$
- $c a_{n}=$ sequence of weight space dimensions of a simple SL2 representation (well, of its distribution algebra)
- One can thus rediscover Cantor's XYZ from SL2 representation theory

Thank you for your attention!

I hope that was of some help.

