Or: Counting intersections



Degrees 1 and 1
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> [Line aX + bY = c Line a/X + by = ¢
» Generically they intersect in - point

» Projectively there are no non-intersections



Degrees 1 and 2
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> [Line aX + bY = c Circle aX?+ bY? =c
» Generically they intersect in - points

» Over C there are no non-intersections



Degrees 2 and 2

m— XA2-Y72=0.1
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> _ aX?+bXY+cY?=d Degree 2 curve a'X%+b'XY+c'Y?=d’
» Generically they intersect in l points

» “Special” intersections are double intersections



Enter, the theorem
X, Y generic projective curves over C of degrees deg X and deg Y, then:

X and Y intersect (with multiplicities) deg X deg Y times

» Over R one gets < instead of =

» There is a version over any field, and also a higher dimensional version

» Two circles intersect 4 times, which uses C and oo, namely (1: £/ : 0)

—X424(Y-0.25)"2=1

\/ B



Multiplicities
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Bézout's theorem for a circle and an ellipse depends on the _



| hope that was of some help.



