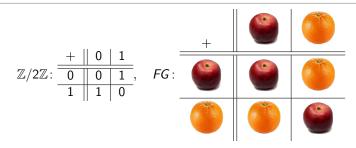
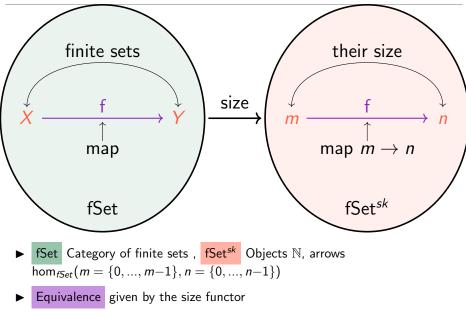

What is...quantum topology - part 10?

Or: Categories 8 from Chapter 1


The science of equality !?

The science of equivalence!



- ▶ $\mathbb{Z}/2\mathbb{Z}$ and the fruit group *FG* are not the same since their sets differ
- ► They are equivalent=isomorphic "Same up to renaming"

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\cong} FG, \quad 0 \mapsto \bigcirc , 1 \mapsto \bigcirc$$

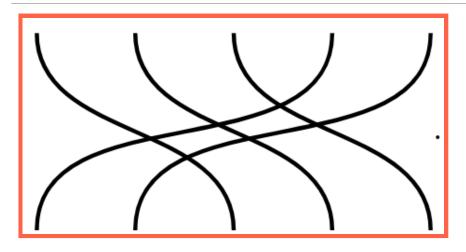
Main point As soon as one varies the underlying set \cong is the true =

Category theory goes one step further

set-based mathematics: fSet has "more" objects, category theory: Who cares?

An isomorphism $F: C \rightarrow D$ is a functor such that

 $\exists G: D \rightarrow C \text{ with } GF = id_C \text{ and } FG = id_D$


- ▶ In this case, C and D are called isomorphic $C \cong D$
- ► Isomorphisms are bijections on objects and arrows
- ▶ This notation coincides with isomorphisms in CAT

An equivalence $F: C \rightarrow D$ is a functor such that

 $\exists G: D \to C \text{ with } GF \cong id_C \text{ and } FG \cong id_D \quad (\cong \text{ means natural iso})$

- ▶ In this case, C and D are called equivalent $C \simeq D$
- Equivalences are bijections on arrows
- F is an equivalence \Leftrightarrow F is fully faithful and essentially surjective
- Essentially surjective = All $Y \in D$ are isomorphic to some F(X)
- ▶ This is the "correct" notion of equal in Cat

Even more basic

▶ fSet_{iso} = category of finite sets and isomorphisms

▶ The above gives an equivalent category describing fSet_{iso}

Thank you for your attention!

I hope that was of some help.