$\label{eq:what is...quantum topology - part 13?} What is...quantum topology - part 13?$

Or: Monoidal categories 1 from Chapter 2

Filling in the question mark

- ► Categories categorify sets
- ► Monoids are enriched sets
- ▶ What completes the square?

What we do not want!

Group-like structures						
	$\textbf{Totality}^{\alpha}$	Associativity	Identity	Invertibility	Commutativity	
Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded	
Small category	Unneeded	Required	Required	Unneeded	Unneeded	
Groupoid	Unneeded	Required	Required	Required	Unneeded	
Magma	Required	Unneeded	Unneeded	Unneeded	Unneeded	
Quasigroup	Required	Unneeded	Unneeded	Required	Unneeded	
Unital magma	Required	Unneeded	Required	Unneeded	Unneeded	
Semigroup	Required	Required	Unneeded	Unneeded	Unneeded	
Loop	Required	Unneeded	Required	Required	Unneeded	
Inverse semigroup	Required	Required	Unneeded	Required	Unneeded	
Monoid	Required	Required	Required	Unneeded	Unneeded	
Commutative monoid	Required	Required	Required	Unneeded	Required	
Group	Required	Required	Required	Required	Unneeded	
Abelian group	Required	Required	Required	Required	Required	

- ▶ Monoids also appear e.g. via monads in categories
- ▶ Monads are not categorifications of monoids; just "similar in nature"
- ► A categorification should have two operations

Monoids

A monoid (M, \cdot) consists of

- ► A set M
- ▶ A multiplication \cdot : $M \times M \rightarrow M$ (write $ab = a \cdot b$)
- ▶ A unit $1 \in M$

such that

- ightharpoonup · is associative a(bc) = (ab)c
- ightharpoonup · is unital 1a = a = a1

For completeness: A formal definition

A monoidal category $(C, \otimes, 1, \alpha, \lambda, \rho)$ consists of

- ► A category C
- ▶ A bifunctor \otimes : $C \times C \to C$ (write $XY = X \otimes Y$)
- ▶ A unit object $1 \in C$
- Natural isomorphisms $\alpha_{X,Y,Z} \colon X(YZ) \to (XY)Z$, $\lambda_X \colon \mathbb{1}X \to X$, $\rho_X \colon X\mathbb{1} \to X$ such that

(a) the \bigcirc equality holds, i.e. we have commuting diagrams

(b) the \triangle equality holds, i.e. we have commuting diagrams

Some examples

Name	Objects	Arrows	\otimes
Set	Sets	Maps	×
Cat	Categories	Functors	×
1Cob	0-manifolds	1-manifolds	See below
nCob	(n-1)-manifolds	n-manifolds	Similarly as below
$Vec_\mathbb{K}$		K-linear maps	\otimes
$\overline{Vec_{\mathbb{K}}}$	K-vector spaces		\oplus

Most diagrammatic categories are monoidal via $\ \ juxtaposition$:

Thank you for your attention!

I hope that was of some help.