What is...quantum topology - part 14?

Or: Monoidal categories 2 from Chapter 2

A "wrong" and a "correct" definition

- ▶ (B) Same result regardless of how valid pairs of parentheses are inserted
- ▶ "Philosophically correct" Use (B) as the definition and show that (A) \Leftrightarrow (B)

Strategical interlude

- ▶ Define a monoid/group/... using $h \cdot (g \cdot f) = (h \cdot g) \cdot f$
- ▶ Show that $h \cdot (g \cdot f) = (h \cdot g) \cdot f$ implies all bracketings Coherence theorem
- ► Forget parenthesis altogether Strictification

Why parenthesis in the first place?

- ▶ $X \times (Y \times Z) \neq (X \times Y) \times Z$ as sets Set theory is inflexible
- ▶ In order to make SET with $\otimes = \times$ monoidal we need parenthesis

For completeness: A formal definition

A strict monoidal category $(C, \otimes, 1)$ consists of

- ► A category C
- ▶ A bifunctor \otimes : $C \times C \rightarrow C$ (write $XY = X \otimes Y$)
- ▶ A unit object $1 \in C$

such that

(a) associativity holds, i.e.

$$X(YZ) = (XY)Z, \quad h \otimes (g \otimes f) = (h \otimes g) \otimes f$$

(b) the identity law holds, i.e.

$$1X = X = X1$$
, $id \otimes f = f = f \otimes id$

Theorem (strictification)

Every monoidal category is monoidally equivalent to a strict monoidal category

Some examples

Name	\otimes	Strict?	Strictification
Set	×	No	S(Set)
Cat	×	No	S(Cat)
1Cob	Juxtaposition	Yes	1Cob
nCob	Juxtaposition	Yes	nCob
Vec _K	\otimes	No	$S(Vec_\mathbb{K})$
Vec _K	\oplus	No	$S(Vec_\mathbb{K})$
End(C)	0	Yes	End(C)

- \blacktriangleright Often the skeleton S(C) is the strictification but not always
- ► In general the strictification is an endofunctor category

Thank you for your attention!

I hope that was of some help.