What is...quantum topology - part 17?

Or: Monoidal categories 5 from Chapter 3

Generators-relations

- ► Above A group given as a multiplication table
- ► Above 2 A group given by generators-relations
- ► Game we will play Try to find generators-relations of 'nice' categories

Generators-relations for sets

- lacktriangle Alphabets S = the symbols we use ("pearls"); we do not include \emptyset (id)
- ► Words = concatenations of pearls on a line
- lacktriangle Relations R = the ways to manipulate pearls

Generators-relations for monoidal categories

- ▶ Objects As for sets
- ► Morphisms Similarly, but we stack them like bricks; generators T
- ightharpoonup Relations R = the ways to manipulate bricks

For completeness: A formal definition

Annoying but not difficult to write down...

make me a list of the ten most annoying things

Sure — here's a list of ten widely considered annoying things, based on common human experiences. You might relate to a few of them:

- 1. Loud chewing or slurping Especially in quiet settings.
- Slow walkers in crowded places Bonus irritation if they block the whole path.
 People who interrupt constantly Especially mid-thought.
- 4. Unskippable ads (especially back-to-back ones) Just let us watch the videol
- 5. Getting a song stuck in your head And only knowing one line of it.
- 6. When autocorrect changes a perfectly fine word You meant what you typed!
- Wi-Fi cutting out during important moments Bonus rage if it's during a live call.
 People who leave dishes near the sink But not in it or, better, the dishwasher.
- 9. "We need to talk" texts with no follow-up Instant stress activation.
- Getting ghosted after making plans Time is precious, don't waste it!
 Want a version that's more niche or targeted (like workplace, roommates, or internet behavior)?

Example The Brauer category Br

$$S: \bullet, \quad T: \times : \bullet^2 \to \bullet^2, \quad \cap: \bullet^2 \to \mathbb{1}, \quad \vee: \mathbb{1} \to \bullet^2,$$

$$R: \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right\} = \begin{array}{c} \\ \\ \\ \\ \end{array}, \quad \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} = \begin{array}{c} \\ \\ \\ \\ \end{array} \right\}$$

A generators-relations presentation

- ► Theorem Br is monoidally equivalent to 1Cob
- Here is the equivalence:

$$\mathbf{Br} \to \mathbf{1Cob}, \ \bullet \mapsto \bullet, \biguplus \mapsto \biguplus, \bigcap \mapsto \bigcap, \bigcup \mapsto \bigcup.$$

▶ Proof? E.g. writing cobordisms in Morse form (as above) shows fullness

Thank you for your attention!

I hope that was of some help.