What is...quantum topology - part 4?

Or: Categories 2 from Chapter 1

A main example

Above The category of tangles 1Tan

• Objects are boundary points •, $\bullet^2 = \bullet \bullet$ etc,

• Morphisms are tangles, as above, with $X = \bullet^3$, $Y = \bullet^5$ and $Z = \bullet$

Composition

- Recall A category's main structure is composition
- Composition in 1Tan $gf = g \circ f =$ "stack g on f"
- Above The composition of *f* and *g* from the previous slide

Variations

• Bottom The category 1State of states (= 1Tan with orientation)

► Above The composition of *f* and *g* from the previous slide

The category 1Tan of 1 dimensional tangles is defined:

- ▶ Its objects are 0 dimensional manifolds $\bullet^n = \bullet ... \bullet$ for $n \in \mathbb{N}$ a.k.a. points
- ► Its morphisms are 1 dimensional cobordisms between these a.k.a. strands
- ▶ The strands are not oriented but embedded
- Composition = stacking

Variations:

- 1Cob (no embedding)
- 1State (embedding + orientations)

There is also a monoidal structure discussed later; its given by juxtaposition:

Quantum topology without topology

	$\operatorname{monoidal}$	braided	pivotal	symmetric	self-dual \bullet	Reidemeister 1	topology
Br	Y	Y	Y	Y	Y	Y	1Cob
qBr	Y	Y	Y	Ν	Y	Y	1Tan ·
oqBr	Y	Y	Y	Ν	N	Y	1State
orqBr	Y	Y	Y	Ν	Ν	Ν	1Ribbon

A quantum invariant Q is a structure preserving functor $\mathrm{Q\colon}_{-}\mathbf{Br}\to\mathbf{C},$

where **C** is "a linear algebra like category".

- Main goal Introduce these categories rigorously
- Different names The algebraic incarnations are called Brauer categories ??Br
- Quantum invariants are invariants of such categories

Thank you for your attention!

I hope that was of some help.