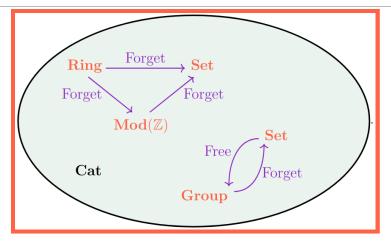
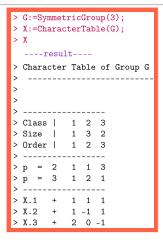

What is...quantum topology - part 5?


Or: Categories 3 from Chapter 1

The(!) examples of a category

- Above The category of sets (right) and the category of vector spaces (left)
- ▶ These are the same up to linearization
- ▶ In QT we like linear thingies so we prefer Vec_k


The(!) example of a category

Above The category of categories

- ► In some sense category theory is self-referring
- ► Slogan Everything is a category, so focus on relations between objects

Another important example in QT

- Above The category of group representations
- ► Or rather its decategorification : the character ring
- ▶ Most of QT is some version of 1Tan or the character ring of a group

A category C is a quadruple $C = (Ob(C), hom_C, id, \circ)$ consisting of:

- ▶ A class Ob(C) of object
- ▶ For $X, Y \in Ob(C)$ a set $hom_C(X, Y)$ of arrows
- ▶ For $X \in Ob(C)$ and identity arrow id_X
- ► A composition for $f: X \to Y$ and $g: Y \to Z$ denoted $gf = g \circ f: X \to Z$ such that:
- $\bullet \ \circ$ is associative
- id_X are identities
- the sets $\hom_C(X, Y)$ are pairwise disjoint

"Like a set with arrows" "Like a group with multiple start points"

"Like a universe where relations=arrows matter"

What categories does QT study?

Notion	Categorification
Set	Category
Monoid	Monoidal category
Involutive monoid	Pivotal category
Commutative monoid	Braided category
Abelian group	Additive/abelian category
Ring/algebra	Fiat/tensor category
Group ring	Fusion category

► Categories categorify sets

▶ 1Tan has more structure than a plain category

▶ QT therefore looks at categorifications with more structure , e.g. as above

Thank you for your attention!

I hope that was of some help.