What is...tropical geometry - part 12?

Or: Valuations

Poles and zeros

Above The Gamma function and its poles

• Pole of f (= a zero of 1/f) \Leftrightarrow dividing by zero; the order measures how often one divides by zero

• Example $\frac{1}{x^k}$ is a pole of order -k at x = 0; x^k has a zero of order k at x = 0

Tropical addition

- Write v(f) for the order of a zero or pole of f
- Addition becomes min $v(f+g) \ge \min\{v(f), v(g)\}$

• Example (above)
$$v(1/x^2) = -2$$
 and $v(1/|x| + 1/x^2) = -2$

Tropical multiplication

• Write v(f) for the order of a zero or pole of f

• Multiplication becomes addition v(fg) = v(f) + v(g)

• Example (above) v(1/|x|) = -1 and $v(1/x^2) = -2 = v(1/|x|) + v(1/|x|)$

A valuation on a field ${\mathbb K}$ is a function

 $\nu\colon \mathbb{K}\to \mathbb{R}\cup\{\infty\}$

such that:

(i)
$$v(f) = 0$$
 if and only if $f = 0$

(ii) v(fg) = v(f) + v(g)

- (iii) $v(f+g) \ge \min\{v(f), v(g)\}$ for $f, g \ne 0$
 - **Example (very tropical)** \mathbb{K} = rational functions, v = zero/pole order
 - ► Example (not so tropical) The *p*-adic integers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the *p*-adic valuation

Very tropical

- Power series = something of the form $a_0 + a_1x + a_2x^2 + a_3x^3 + ...$
- Puiseux series C{{x}} = power series allowing rational numbers that have a common denominator
- ► C{{x}} has a (very tropical) valuation given by v(f) = the lowest exponent that appears in the series

Thank you for your attention!

I hope that was of some help.