What is...tropical geometry - part 13?

Or: Non-Archimedean fields

Normed spaces

- ▶ Norms provide a way to measure "length", essential for geometry
- ▶ Normed spaces allow us to define concepts like continuity etc.
- ▶ Norms mimic Euclidean space as above, but might be still different in flavor

Valuation to norm

- Anti-log A valuation $v \colon \mathbb{K} \to \mathbb{R} \cup \{\infty\}$ induces a norm $|a| = \exp(-\operatorname{val}(a))$
- **non-Archimedean** We have $|a + b| \le \max\{|a|, |b|\}$
- \blacktriangleright This is very different from the triangle inequality in \mathbb{R}^3

Example: p-adic numbers

▶ For \mathbb{Q} the *p*-adic valuation is defined by $v_p(a) = \max\{n \in \mathbb{Z} : p^n \text{ divides } a\}$

▶ The induced *p*-adic norm is given by $|a|_p = p^{-\operatorname{val}_p(a)}$ (non-Archimedean)

- *p*-adic numbers \mathbb{Q}_p form a complete field with respect to this norm

Consider a valuation $v : \mathbb{K} \to \mathbb{R} \cup \{\infty\}$ on a field \mathbb{K} ; a norm on \mathbb{K} is defined by: $|a| = \exp(-v(a))$ for $a \neq 0$, |0| = 0This norm satisfies the non-Archimedean property : $|a+b| \le \max\{|a|, |b|\}$

- Example (tropical) Rational functions (as a special case of the below)
- **Example (Puiseux series)** Puiseux series $\mathbb{C}\{\{x\}\}\$ have a valuation given by the order of the lowest power of $x \Rightarrow$ non-Archimedean field

Computable? Well...

• Puiseux series = something of the form $\sum a_i x^{t_i}$ with $t_i \in \mathbb{Q}$

► Problem These often cannot be described by a finite amount of information

▶ For a computer fields like Q(x) are better

Thank you for your attention!

I hope that was of some help.