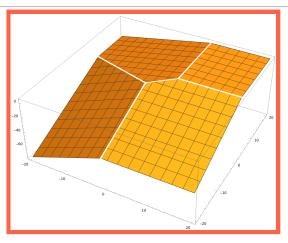
What is...tropical geometry - part 15?

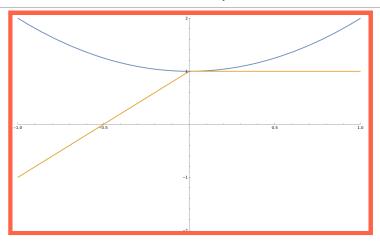
Or: Tropicalization

Tropical polynomial



Above The tropical polynomial 2x²y² - y² - x + 4, seen as a function ℝ² → ℝ
Correct This is 2 ⊗ x ⊗ x ⊗ y ⊗ y ⊕ (-1) ⊗ y ⊗ y ⊕ (-1) ⊗ x ⊕ 4
Translated This is min{2 + 2x + 2y, -1 + 2y, -1 + x, 4}

Make it tropical

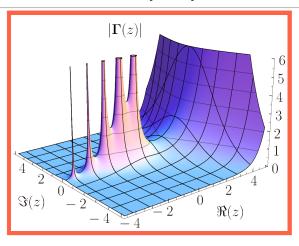


• Blue (top) curve above $x^2 + 1$

• Orange curve above
$$x^{\otimes 2} \oplus 1 = \min\{2x+1,1\}$$

• Make it tropical $= + \mapsto \min, \circ \mapsto +$ (this maps 'poly \mapsto tropical poly')

A better way to say this!?



► Tropicalization = take a log

► This is a bit like taking a valuation

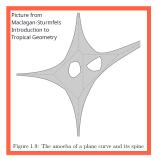
• Example $\mathbb{C}\{\{t\}\}\$ has a valuation given by v(f) = the lowest exponent

For completeness: A formal definition

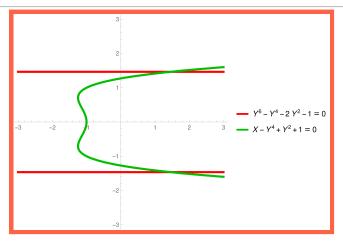
Given
$$p = \sum_{u \in \mathbb{N}^n} c_u x^u$$
 a polynomial, then
 $trop(p) \colon \mathbb{R}^n \to \mathbb{R}, w \mapsto \min(v(c_u) + w \cdot u)$

is the tropicalization of p for a given valuation v

- Example For $p = (t + t^2)x_1 + 2t^2x_2 + 3t^4x_3 \in \mathbb{C}\{\{t\}\}[x_1, x_2, x_3]$, we have $trop(p) = \min(1 + w_1, 2 + w_2, 4 + w_3)$
- Logs everywhere!



On our way to Gröbner bases



- Above The intersection of two varieties
- Simultaneously solving polynomial equations can be done with Gröbner bases
- TG plays a crucial role in this process

Thank you for your attention!

I hope that was of some help.